
Biotech Advs vol.l,pp 17-30, 1983 0734-9750/83 $0.00.+.50 
Printed in Great Britain. All Rights Reserved. Copyright © Pergamon Press Ltd 

TRANSPORT PHENOMENA, REACTOR DESIGN AND 
SCALE-UP 

JAMES Y. OLDSHUE 

Vice President, Mixing Technology, Mixing Equipment Co., Inc., A Unit of 
General Signal Corp., Rochester, New York, USA 

ABSTRACT 

This review will cover the area of impeller-mixed stirred~tank reactors, 
In addition, it will consider bubble columms, in which air or gas is passed 
up a liquid filled colum through distribution plates covering the full 
area of the column, and also airlift reactors, in which the air is confined 
in a channel by means of a loop or draft tube designed to impart a certain 
type of overall circulatory pattern to the entire tank. 

There is considerable interest in the kinetics inside the solid part of 
various kinds of immobilized solid pellet type of enzymes and catalysts. 
The use of these particles in fixed bed reactors is also covered, 
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TMPELLER-MIXED REACTORS 

One of the basic design parameters is the power consumption of an impeller 
under a wide range of fluid and gas flow conditions. Work by Gray (11) 
discusses a new correlation of the power drawn by an impeller and the 
various parameters of speed, diameter, liquid flow and gas flow rate. The 
correlation involves the total power which is the sum of the impeller power 
and the gas expansion power, The correlation is said to be accurate to 
within + 207, but it includes a quantity, the hold-up of gas in the liquid, 
which is normally not known in advance. 
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18 J.Y. OLDSHUE 

Actually, the power of an industrial mixer needs to be calculated more 

accurately than the estimated 20%, so that considerable adjustability in 

the impeller configuration may be required if close control of power 

applied to the impeller is needed over a variety of operating gas flow 

rates. 

A review article by Van't Riet (37) sumarizes many articles giving data on 
mass tramsfer rates in gas liquid systems for batch and continuous steady- 
state systems. The mass of gas entering and mass of gas leaving give an 

untquivocal measure of the gas absorption rate. For correlation, a 
calculation of the mass transfer coefficient, Ka and Kia is normally 
necded. This involves knowledge of the concentration of solute from the 
gas in the liquid. If this is oxygen, then there are several methods 
available of various degrees of accuracy for measuring the dissolved oxygen 
level in liquid. Depending upon the blend time in the tank, questions of 
the instantaneous and average dissolved oxygen concentration are appropria- 
te. However, in order to use the correct units, either the gas phase 

partial pressure must be converted to a liquid phase equilibrium concen- 
tration by means of Henry's Law, giving the C*, or the liquid phase 
concentration, DO, must be converted to an equilibrium partial pressure, 
P*. 

There is often discussion as to whether to use Ka or K a depending on 
where the major resistance lies. However, since we only know bulk concen- 
tration in the gas and liquid phase, it does not make any difference which 
driving force we use, A C or A P, and the use of Kua or Kja is arbitrary. 

Studies of gas phase and liquid phase variables will affect either of the 
Kga or Kja appropriate to their effect on the system, cnd it does not do 
much good to speculate as to where the resistance lies as far as the use 

£ K a or K a is concerned. ot % b 

Using sodium sulfite solutions to measure mass transfer rates give numbers 
that are only applicable to that particular reaction and concentration of 

ions. Having the data can be of value in sorting out the effect of major 
variables, such as mixer and tank geometry, and sparge ring geometry. Mass 
transfer rates with fast chemical reactions give a normal situation in that 
the p* is close to zero. This means that there must be an empirical or 

experimental correlation to translate from sulfite data to amother type of 
system.
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The dynamic gassing out method as discussed by Van't Riet has problems of 
the response time with the system to sudden changes in gas rate, gas 
concentration, fluid shear rates, mixer varisbles, and blend time, which 
affect the mechanism of the whole operation. This method is of limited 
applicability, and a considerable number of tests must be made to make 
sure that the mass transfer rate measured is appropriate to the mixing and 
mass transfer dynamics of the whole system. 

The measurement of interfacial area gives one component of the K.a, but 
unless it is coupled with the K, it does not give the overall correlation, 
Physical methods of measuring "a", such as photographs or chemical methods, 
yield widely different results. In addition, a procedure must be 
established to relate instantaneous "a" values in the tank with the overall 
average value of the "a" throughout the tank. 

It is pointed out by Van't Riet (37), that l(Gs results can be correlated by 

the expression, Ka o @/V)* ®F . 

Another factor which is mentioned by Oldshue (26) is that the ratio of the 
energy put in by the gas and the emergy put in by the mixer affect the 
mass transfer correlation. For example, if the emergy put in by the mixer 
and the gas were equal, exponents alpha and beta are usually lower than if 
mixer energy were three times higher than the gas energy. This means 
that correlations from the literature which bracket these areas will en— 
compass thesedifferent ranges of the ratio of mixers to gas energy, and 
will have a different exponent alpha or beta depending upon the experimental 
range used, and the technique used for giving an average alpha and beta. 

Another problem discussed by Oldshue (26) is that when working with small 
scale experiments, if the impeller blade gets physically out of proportion 
to the gas bubble, comparisons of small and large scale systems are skewed 

inappropriately compared to the scale up correlation in which the impeller 

blade is more than two or three times bigger than the gas bubbles. A 
comparison is "to hit a baseball with a baseball bat compared to hitting 
a basketball with a baseball bat". The effect of ion concentration is 
very remarkable as discussed thoroughly by Van't Riet (37). Of the major 

impeller geometry variables, the effect of D/T ratio and the ratio of the 
sparge Ting diameter to the impeller diameter ratio has turned out to be 
of major importance. In general, power per unit volume and superficial
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gas velocity are the major variables needed to correlate the Kia term 

assuming other chemical and gas phase relationships are appropriate to the 

system under study. 

Andther method of study involves the use of batch liquid, and the measure- 

ment of absorption of oxygen or other solute with time in the batch liquid, 

the progress being measured by suitable probes, or the removal of the 

solute by suitable stripping gas. These methods have a host of operating 

problems. The uniformity of the solute in the liquid depends upon relative 

mass transfer and the blending rate, and therefore changes during the run. 

The gas phase off gas is continually changing during the run, and the 

instantaneous relationship of the off gas concentration to the solute 

measured depends upon many different kinds of fluid mechanics and mixing 

dynamics. In addition, in the case of dissolving oxygen in water, when 

saturation is reached, the dissolved oxygen level, if blending is rapid, 

will be a mean of the concentrations at the bottom and the top of the tank. 

Therefore, the tank will be absorbing in the bottom part of the tank and 

stripping the.top part, which is not at all the usual situation of the 

tank in steady state use in the process. 

In addition, the velocity head generated by the impeller complicates the 

equilibrium solubility of the solute, and as other variables, it must be 

correlated. The chemicals used in the oxygen removal step prior to the run 

also build up- during a series of experiments and cause many problems with 

their effect on the mass transfer coefficient, In addition, the current 

practice of using the uptake rate at zero solute concentration means that 

data are always being extrapolated back into a range prior to the first 

several experimental data points, thus resulting in a variety of problems. 

It is equivalent to trying to measure the acceleration of a racing car at 

zero time, from velocity measurements made during the acceleration up to 

full speed. 

In terms of some practical methods of controlling oxygen uptake with 

computers, Spriet (36) presents a study called "Static Method' . It shows 

that the computer controlled accuracy depends upon the precision of the 

oxygen analyzer. 

The actual measurement of oxygen mass transfer coefficient has been treated 

by several investigators. An article by Vardar (38) used a frequency 

response technique by controlling the air flow rate by a thermal mass flow
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controller, and the pressurization of the vessel was controlled by 
allowing valves connected to four orifice tubes with different inmer 
diameters to open at certain times. The opening and closing times of the 
orifices were determined by a cam drive which could also be adjusted to 
give different cycling periods. The diameters of the orifice tubes were 
chosen so that the pressure cycle would possess a sinusoidal characteristic. 

A paper by Linek (20) looked at the role of inter-phase nitrogen tramsport, 

in the measurement of the overall volumetric mass transfer coefficient. 

Experiments were conducted in two different ways. In one method, the 

interchange of oxygen and nitrogen in air were performed without either 

interrupting the aeration or agitation of the charge. The second method 

was to remove the dissolved oxygem, and begin the aeration-agitation at the 

same time. Tt was found that the technique of accounting for the oxygen 

transport gave values that were independent to some degree, of the nitrogen 

transfer mechanism for the first method, while the second method gave large 

differences between accounting or not accounting for the nitrogen mass 
transfer. 

A report by Ruchti (33) looked at six different models of the dynamic 
oxygen electrode method for measuring K a. In gemeral, the found that 
K a should be less than the inverse electrode response time. They present 
a method which accounts for gas, film and electrode dynamic effects, and 
requires only a simple semilog plot of response time. In viscous gas 
liquid systems, there is a fraction of very tiny bubbles, less than one 
millimeter, and it is expected that the oxygen tension in these bubbles 
will be in equilibrium with that in the liquid within seconds. This 
"liquid-small bubble dispersion”, may be considered a homogenous phase, 
according to Heijnen (14), and the use of dynamic K a method in viscous gas 
liquid systems can be quite problematical. Andre (2) looked at the problems 
when the substrate in, for example, a cellulosic waste, is insoluble. 

He made a change by means of a step input of CO, in the imlet gas stream 
2 

and found that by taking into account the difference in diffusivity of 
oxygen and carbon dioxide, preliminary results indicating good mass 
transfer data could be obtained. 

For use of mass transfer data in an actual microbial process, there are 

many variables that must be considered. Kappelli (15) used a yeast system 

as a means of measuring the maximum possible oxygen uptake rate in a
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reactor and felt that this gave a typical representation of the reactor 

for other fermentation calculation purposes. Linek (21) used glucose 
oxidase to measure the oxygen absorption in fermenters. They used 

techniques employing both the dynamic and steady state method, and found 

that in certain areas, the dynamic method gave erromeously lower K a 

values if the K a value was higheilthat 0.03 s™'. Other complications 

arose at l%la values around 0.08 s ' and simultaneous interfacial transfer 

of nitrogen and oxygen had to be taken into account in some of these cases. 

Einsele (9) looked at a tank completely filled with liquid, which had 
essentially a marine-type propeller and a draft tube. A gas liquid sepa- 
rator was at the top of the vessel. They found that the gas liquid sepa- 
rator acted as though it were another mixer. The blend time in this 
reactor was 50% of that for a traditional turbine-stirred gas-liquid unit 
at the same power level. 

One of the important parameters in a fermentation study is the oxygen 

solubility in the fermentation medium. Quicker (30) was able to develop 

a solubility model where the solubility reduction is log additive with 

respect to various compounds, mainly sugar electrolytes. 

Firevod (10) illustrated the exceptional accuracy of a galvamic probe 

measuring low oxygen concentrations for certain types of fermentations on 

yeast and other facultative anaerobes which require oxygen for lipid 

synthesis in order to grow and ferment. 

There has always been a speculation as to the availability of oxygen by 

direct gas solid uptake into living organisms. Sobotka (35) gave 

experimental data which lodked at this phenomena and showed that a two-phase 

model was effective in predicting mass tramsfer coefficients. 

Wick (42) gave some calculations on the direct liquid-liquid heat exchange 

in continuous bio-reactors for very low microbial heats of activity. 

Brown (4 ) discussed the changes in variables on scale-up. Mixing variables 

were treated in detail. Geometric similarity causes changes in impor- 

tant process ratios on scale-up, and non-geometric design may be needed to 

control selected parameters. 

The additional pressure in large tanks over that in pilot scale caused a 

décrease in the antibiotic productivity of asparagine and neomycin accor—
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with superficial gas velocity. Initially the K a decreased to a minimu 
value when the liquid velocity was in the order of 7,5 cm/s, and then 
increased at higher liquid superficial velocities. The article (1) pub 
lished an extensive series of profiles in these tanks and concluded tha 
a two-zone model should be used in which the K a data is split between | 
grid zone and the bulk zone. Shah (34) gives a very extensive review o 
design parameters for a bubble column reactor. He presents a series of 

illustrations of the various kinds of reactors and modifications, and g 
an extensive list of some 20 processes that have been published concern 
the application of these colums industrially. 

Shah (34) also mentions the homogemeous (bubbly flow) regime, and the t 
heterogeneous areas, churn turbulence, and plug flow. He shows the are: 
where homogeneous or heterogeneous churn turbulent flow occurs on large 
size columns. He shows that colums wider than about 15 cm in diameter 
needed to obtain data which are relevant to large size units. Curves a 
included for gas hold-up, gas liquid interfacial areas, and extensive d 
on mass transfer coefficients. In general, K a seems to increase in 
proportion to the gas phase velocity to the exponent 0.8. Data on the 
liquid/solid mass transfer coefficient and on some columns having gas/ 
liquid/solid phase present, and heat transfer relationships in bubble 

columns, are also given. 

There have been a different group of findings on the volumetric mass 
transfer coefficients in CMC solutions in bubble colums, and Deckwer (i 
went back and did some new experiments in a lé-cm diameter, 270-cm high 
bubble column. The KLa values were determined as well as dispersion 

coefficients by fitting the predictions of the axial disperse plug flow 

model with experimental oxygen concentration found in the liquid phase. 
His correlation described K a values measured in fermentation broth, Pe 
cillium chrysogenw, with excellent agreement. Roels (32) presented a 
non-equilibrium thermodynamic approach to the pover dissipation and the 
heat production of bubble columns. 

SOLID-PHASE BIOCATALYST REACTORS 

A group of papers treat the diffusion and kinmetics inside.the particles 
of immobilized enzymes either on the exterior or imterior portions of a 
solid support. These papers are listed in the bibliographies primarily
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source of additional information:Parke (28), Verhoff (39), Lee (19), 

ma (27), Kulkarni(18), Do (7), and Webster (41) 

ies of articles describe the performance of packéd bed reactors: 
£f (40), Patwaidhan (29), Karanth (16). These are given for reference 
ses. 

o-reactors which have a solid substrate attached to a surface, fluid 
rate has an effect on the thickness and diffusion in these slimes. 

er by Duddridge (8) looked at a radial flow growth chamber to study 
nitial phases of bacterial adhesion to surfaces under flowing con- 
ns. He found the maximum levels of adhesion occurred in general 
of lower surface shear rate, particularly less that 6 to 8 pascals. 

dhesion was still noticeable up to a shear stress of 130 pascals. 
attached under static conditions could be detached at- surface shear 
of about 10 to 12 pascals. 

er paper by Rittmann (31) showed the effect of shear stress on the 
6f product on the bio-film reactor. A study by Chen (5) looked at 
n transfer in filter slimes by means of a microelectrode. 
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ding to Kaszab (17). 

AIRLIFT AND LOOP FERMENTERS 

Airlift fermemters are characterized usually by a central draft tube, in 
.ich gas is admitted to a central tube, and forms a circulation pattern 

throughout the vessel. These have an appeal in eliminating the maintenance 
associated with the conventional stirred tank mixers. An unpublished 

June, 1983 presentation by Robinson and Moo-Young at the ACHEMA in Germany, 

indicated the obvious truism that you can always get higher oxygen mass 
transfer coefficients with mechanical mixing added to whatever gas rate is 
used. If the organism can use this uptake rate, and if it is desired to 
maximize the productivity of a given volume of reactor, then this is the 
direction that fermentations have traditionally takem in the past. However, 
if the organism does not need this high uptake rate, or if optimization of 
amount of oxygen tranfer per unit of capital and operating costs is desired, 
then airlift fermenters need to be evaluated carefully to see what the 
economics of the operation are. The oxygen uptake rate per reactor volume 

will be lower than with mechanical stirring. 

Mechanically stirred fermenters are normally available with some process and 

mechanical design know-how as supplied by both the equipment supplier and 
the user. Airlift fermenters are normally based on purchasing a compressor 
of a certain known volumetric output, and no consideration of the process 
and mechanical characteristic in the reactor are available from the compr- 
essor supplier. 

Margaritis (24) studied the effect of draft tube geometry with four jets at 

e bottom. He used various single and double draft tubes. They found that 
the air bubble formation characteristics were different with the various 
draft tubes. This explained differences observed in mass transfer and 
mixing characteristics. Their power levels range from about 0.02 to 0.25 
Wi/m®. Typical stirred fermenters go up to the range of 4 ki/m’ when 
oxygen requirements are suitable for these power levels. 

Merchuk (25) considered a previously presented model and extended it by 
considering the range of pressure along the tubes. His new model allows the 
prediction of oxygen concentration at different points of airlift fermenters 
and how to determine the best value for the gas flow rate. Luttmann (22) 

set up a distributive parameter model for the simulation of single cell
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protein product ion using reactors with an outer loop. He considered 

variations of the substrate concentrations. co, concentrations in'the 

liquid, and 0, and CO, phase concentrations i the gas phase. He took 

into account vaTiations of dissolved oxygen concentration and pressure and 

K a along the column. He used bis model to describe the cultivation of (/ 

Hansenula polymorpha in a tower loop reactor 275 cm high and 150 cm in 

diameter. 

Luttmann (23) also took the data from the smaller reactor and used it to 

simulate the cultivation process in a 40-m high production reactor. This 

wodel was simplified somewhat to examine variables in a 20-m high pilot 

plant airlift loop reactor. Dependifig on the economics, they determined 

that the maximum profit was attained at the boundary between substrate and 

oxygen transfer limited growth. 

Jiegler (43) used a 22-m long, 20-1 tubular fermenter for oxygen transfer 

characteristic tests as a reactor for mycelial growth. K a values were 

correlated for power consumption and aeration rates. They used a variety 

of cultures, and show that the product spectrum on some of these were 

dependent upon the type of reactor used. They used power consumptions up 

to 8 k/m> in the tubular reactor, which did not appear to harm the 

mycelia. 

BUBBLE COLUMNS 

Bubble colums involve a sparger or distributor covering the entire area of 

the column. They have been used for many years in various-types of chemical 

processing, but their use in the bio—reactors is relatively new. Studies 

of their process characteristics is quite different than the approach tol 

stirred tank fermenters, since the user buys primarily an air supply, and 

o mixing or mass transfer experience comes with this. In an article 

published in 1981, Alvarez-Cuenca (1) presented data on a consideration of 

three different models for mass transfer and mixing, He looked at the 

axial dispersion model, a plug flow model, and a two-zome model which 

included a grid zome around the distributor, and a bulk zome in'the rest of 

the column. Most investigators have concluded that colums must be wider 

than about 15 cm in diameter to give meaningful scale-up relationships and 

it is difficult to obtain these large flow rates on experimental equipment. 

Most studies indicate that Kga increased, in some cases almost linearly,
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plant and a 200 m® plant reactor. 

NOMENCLATUKE 

a - Interfacial area; DO - Dissolved Oxygen;  C - Equilibrium Liquid- 

phase Concentration; p. - Equilibrium Gas-phase Partial Pressure; Kia - 
Overall Mass Transfer Coefficient based on AP; Ka - Overall Mass Transfer 

Coefficient based on AC. . 
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