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Analysis and Optimization of Kenics Static Mixers

The mapping approach is applied to study the distributive mix-
ing in the, widely industrially used, Kenics static mixer. The
flexibility of the mapping method makes it possible to study
and compare thousands of different mixer layouts and perform
optimization with respect to macroscopic homogenization effi-
ciency and interface generation. In the paper two different de-
signs of the mixer are investigated. The conventional mixer
with sequentially different twisted blades and adesign where
the twist direction is maintained constant. In both cases the
blade twist angle is varied. Recommendations are given in the
choice of the design of the mixer dependent on the desired
structure of mixing.

1 Kenics Static Mixer: Introduction

1.1 Mixer Geometry

The underlying idea of the Kenics mixer (and all other static-
mixers) is to mimic the “Baker’s transformation” [1, 2] by re-
peatedly cutting, re-orienting and stacking material to produce
a multitude of striations. The Kenics static mixer is a typical
in-line mixing device. It consists of a cylindrical pipe with mix-
ing elements fixed inside. The mixing elements are formed by
helically twisted rigid plates (usually of the same pitch), each
dividing the pipe into two twisted semicircular ducts. The in-
serts are placed tightly one after another so that the leading
edge of the next insert is perpendicular to the trailing edge of
the previous one. The flow along the pipe is driven by a pres-
sure gradient. Although such mixers are also used at moderate
(� 102) Reynolds numbers, we consider the most common
case of Stokes flow of viscous fluids, where the inertial forces
can be neglected. The mixer configuration as used by Avalosse
and Crochet [3] is taken as a starting point. The inner diameter
of the pipe is 60 mm, the length of the 180�-twisted blade
equals 115 mm, while its thickness (2 mm) is neglected here
for simplicity. (This assumption seems not to cause any notice-
able differences in the mixer’s operation, see the results of [3].)
Layouts with blades of different twist direction (both left- and
right-oriented) will be considered, and we change the total
blade twist angle while keeping the pitch of the blades the same
as in Avalosse and Crochet [3]. Thus, changing the total blade
twist means actually changing the blade length.

Fig. 1 shows three typical examples of mixer configurations.
Although the methods used in the current work easily allow for
higher flexibility, we will mostly limit the analysis to mixers
that are spatially periodic with a repeating period sequence of
exactly two blades of the same absolute twist (except in subsec-
tion 4.1), but possibly with a different twist direction. The ob-
vious reason is that because of the working principle of the Ke-
nics mixer, not much improvement can be expected from
symmetry-breaking measures (that are rather successful in pro-
totype mixing flows [4 to 7]), e. g. by combining long and short
blades. Under these limitations two basic types of design exist
[8]: a layout with alternating right and left twist direction, re-
ferred to as “RL”, and the layout with blades in the same direc-
tion of the twist, referred as “RR”. Since it was shown in [9]
that the pitch angle has a rather minor effect on mixer perfor-
mance, it is fixed in the current work, and the only parameter
to change is the total blade twist angle. Throughout this chapter
we will use the “RR” or “RL” notation for the type of geometry
together with the blade twist angle (in degrees) to specify a par-
ticular mixer geometry. Thus, for example RL-180 stands for
the mixer, combining the blades twisted 180� in both direc-
tions, Fig. 1A, as analyzed in [3]. Fig. 1B shows the RR-180
configuration as was considered by Hobbs and Muzzio [8],
while Fig. 1C illustrates the RL-120 geometry, which was sug-
gested as more energy efficient in [9].

138  Hanser Publishers, Munich Intern. Polymer Processing XVIII (2003) 2

Fig. 1. Examples of different Kenics designs, A: a “standard” right-
left layout with 180° twist of the blades (RL-180); B: right-right layout
with blades of the same direction of twist (RR-180); C: (RL-120) right-
left layout with 120° blade twist
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The mapping approach is applied to study the distributive mix- 

ing in the, widely industrially used, Kenics static mixer. The 

flexibility of the mapping method makes it possible to study 

and compare thousands of different mixer layouts and perform 

optimization with respect to macroscopic homogenization effi- 

ciency and interface generation. In the paper two different de- 

signs of the mixer are investigated. The conventional mixer 

with sequentially different twisted blades and adesign where 

the twist direction is maintained constant. In both cases the 

blade twist angle is varied. Recommendations are given in the 

choice of the design of the mixer dependent on the desired 

structure of mixing. 

1 Kenics Static Mixer: Introduction 

1.1 Mixer Geometry 

The underlying idea of the Kenics mixer (and all other static- 
mixers) is to mimic the “Baker’s transformation” [1, 2] by re- 

peatedly cutting, re-orienting and stacking material to produce 
a multitude of striations. The Kenics static mixer is a typical 
in-line mixing device. It consists of a cylindrical pipe with mix- 

ing elements fixed inside. The mixing elements are formed by 
helically twisted rigid plates (usually of the same pitch), each 
dividing the pipe into two twisted semicircular ducts. The in- 

serts are placed tightly one after another so that the leading 
edge of the next insert is perpendicular to the trailing edge of 
the previous one. The flow along the pipe is driven by a pres- 
sure gradient. Although such mixers are also used at moderate 
(~ 10%) Reynolds numbers, we consider the most common 

case of Stokes flow of viscous fluids, where the inertial forces 
can be neglected. The mixer configuration as used by Avalosse 
and Crochet [3] is taken as a starting point. The inner diameter 

of the pipe is 60 mm, the length of the 180°-twisted blade 
equals 115 mm, while its thickness (2 mm) is neglected here 

for simplicity. (This assumption seems not to cause any notice- 
able differences in the mixer’s operation, see the results of [3].) 

Layouts with blades of different twist direction (both left- and 
right-oriented) will be considered, and we change the total 

blade twist angle while keeping the pitch of the blades the same 
as in Avalosse and Crochet [3]. Thus, changing the total blade 

twist means actually changing the blade length. 
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Fig. 1 shows three typical examples of mixer configurations. 
Although the methods used in the current work easily allow for 
higher flexibility, we will mostly limit the analysis to mixers 
that are spatially periodic with a repeating period sequence of 
exactly two blades of the same absolute twist (except in subsec- 
tion 4.1), but possibly with a different twist direction. The ob- 
vious reason is that because of the working principle of the Ke- 
nics mixer, not much improvement can be expected from 

symmetry-breaking measures (that are rather successful in pro- 
totype mixing flows [4 to 7]), e. g. by combining long and short 

blades. Under these limitations two basic types of design exist 
[8]: a layout with alternating right and left twist direction, re- 

ferred to as “RL”, and the layout with blades in the same direc- 
tion of the twist, referred as “RR”. Since it was shown in [9] 

that the pitch angle has a rather minor effect on mixer perfor- 
mance, it is fixed in the current work, and the only parameter 

to change is the total blade twist angle. Throughout this chapter 
we will use the “RR” or “RL” notation for the type of geometry 

together with the blade twist angle (in degrees) to specify a par- 
ticular mixer geometry. Thus, for example RL-180 stands for 
the mixer, combining the blades twisted 180° in both direc- 
tions, Fig. 1A, as analyzed in [3]. Fig. 1B shows the RR-180 

configuration as was considered by Hobbs and Muzzio [8], 
while Fig. 1C illustrates the RL-120 geometry, which was sug- 
gested as more energy efficient in [9]. 
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Fig. 1. Examples of different Kenics designs, A: a “standard” right- 

left layout with 180° twist of the blades (RL-180); B: right-right layout 

with blades of the same direction of twist (RR-180); C: (RL-120) right- 

left layout with 120° blade twist 
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1.2 Principle of Kenics Operation

The Kenics mixer in general is intended to mimic to a possible
extent the “bakers transformation” (see [1]): repetitive stretch-
ing, cutting and stacking. To illustrate the principles of the Ke-
nics static mixer a series of the concentration profiles inside the
first elements of the “standard” (RL-180) are presented in
Fig. 2. All these concentration distributions are obtained using
the mapping approach. The first image shows the initial pattern
at the beginning of the first element: each channel is filled
partly by black (c ¼ 1) and partly by white (c ¼ 0) fluid, with
the interface perpendicular to the blade. The flux of both com-
ponents is equal.

The images in Fig. 2B to E show the evolution of the con-
centration distribution along the first blade, the thin dashed line
in Fig. 2E denotes the leading edge of the next blade. From the
point of view of mimicking the bakers transformation it seems
that the RL-180 mixer has a too large blade twist: the created
layers do not have (even roughly) equal thickness. The config-
uration achieved 1=4 blade twist earlier (Fig. 2D) seems to be
much more preferable. The next frame, Fig. 2F, shows the mix-
ture patterns just 10� into the second, oppositely twisted, blade.
The striations, created by the preceding blade are cut and dislo-
cated at the blade. As a result, at the end of the second blade
(Fig. 2G) the number of striations is doubled. After four mixing
elements, Fig. 2H, sixteen striations are found in each channel.
The Kenics mixer roughly doubles the number of striations
with each blade, although some striations may not stretch
across the whole channel width. Note, that the images in
Fig. 2 show the actual spatial orientation of the striations and
mixer blades. In all further figures the patterns are transformed
to the same orientation: the (trailing edge of the) blade is posi-
tioned horizontally. This simplifies the comparison of self-si-
milar distributions.

1.3 Existing Approaches to Kenics Mixer Characterization

The widespread use of the Kenics mixer prompted the attention
to the kinematics of its operation and attempts to find ways to
improve its performance. Khakhar et al. [10] considered the-
so-called partitioned pipe mixer, designed to mimic the opera-
tion of Kenics. The analogy is incomplete, since the partitioned
pipe mixer is actually a dynamic device, consisting of rotating
pipe around a number of straight, fixed, perpendicular placed,

rectangular plates1. This device, however, gives the possibility
to control its efficiency by changing the rotation speed of the
pipe (which may be considered to be analogous to the twist of
the blades in a Kenics mixer) and allowed relatively simple
mathematical modeling using an approximate analytical ex-
pression for the velocity field. The expression for the velocity
field (and, consequently, the numerical simulations) was im-
proved by Meleshko et al. [11], achieving even better agree-
ment with experimental results of [10]. However, these studies
were dealing with a simplified model, which fails to catch the
details of the real flow in a Kenics static mixer.

The increasing computational power allowed different re-
searchers to perform direct simulations of the three-dimen-
sional flow in Kenics mixers [3, 8, 12 to 16]. The last paper
considers even flows with higher Reynolds numbers up to
Re ¼ 100. These studies analyzed only certain particular flows
and, unlike [10], did not allow for the optimization of the mixer
geometry, due to high cost of 3D simulations.

More systematic efforts on exploring the efficiency of the
Kenics mixer were made by [9], who suggested a more energy
efficient design with a total blade twist of 120�. They explored
different mixer configurations, but, since the velocity field had
to be re-computed every time, the scope was limited: only se-
ven values of the blade twist angle were analyzed. The aim of
the current work is to study numerically the dependence of the
mixer performance on the geometrical parameter (blade twist
angle) and to determine the optimal configuration within the
imposed limitations. Since it was shown in [9] that the blade
pitch has rather minor effect on mixer performance, it is fixed
in the current work.

The Kenics static mixer was also considered as a tool to en-
hance the heat exchange through the pipe walls [17]. They
found that the Kenics mixer may offer a moderate improve-
ment in heat transfer, but its applicability in this function is
limited by difficulty of i. e. wall cleaning. However, only mix-
ers with the “standard” 180� blade twist were considered. In
the current work we also analyse the influence of the blade
twist angle on refreshing of material on the tube surface. Re-
cently Fourcade et al. [16] addressed the efficiency of striation
thinning by the Kenics mixer both numerically and experimen-
tally, using the so-called “striation thinning parameter” that de-
scribes the exponential thinning rate of material striations. This
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Fig. 2. How the Kenics mixer works: the frames show the evo-
lution of concentration patterns within the first four blades of
the RL-180 mixer

1 Note that the partioned pipe mixer is actually a simplified model of a
RR type of Kenics mixer
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1.2 Principle of Kenics Operation 

The Kenics mixer in general is intended to mimic to a possible 

extent the “bakers transformation” (see [1]): repetitive stretch- 

ing, cutting and stacking. To illustrate the principles of the Ke- 
nics static mixer a series of the concentration profiles inside the 
first elements of the “standard” (RL-180) are presented in 

Fig. 2. All these concentration distributions are obtained using 
the mapping approach. The first image shows the initial pattern 
at the beginning of the first element: each channel is filled 
partly by black (c = 1) and partly by white (c = 0) fluid, with 
the interface perpendicular to the blade. The flux of both com- 
ponents is equal. 

The images in Fig. 2B to E show the evolution of the con- 

centration distribution along the first blade, the thin dashed line 
in Fig. 2E denotes the leading edge of the next blade. From the 
point of view of mimicking the bakers transformation it seems 
that the RL-180 mixer has a too large blade twist: the created 
layers do not have (even roughly) equal thickness. The config- 
uration achieved 1/4 blade twist earlier (Fig. 2D) seems to be 

much more preferable. The next frame, Fig. 2F, shows the mix- 

ture patterns just 10° into the second, oppositely twisted, blade. 
The striations, created by the preceding blade are cut and dislo- 
cated at the blade. As a result, at the end of the second blade 
(Fig. 2G) the number of striations is doubled. After four mixing 

elements, Fig. 2H, sixteen striations are found in each channel. 
The Kenics mixer roughly doubles the number of striations 

with each blade, although some striations may not stretch 
across the whole channel width. Note, that the images in 
Fig. 2 show the actual spatial orientation of the striations and 
mixer blades. In all further figures the patterns are transformed 

to the same orientation: the (trailing edge of the) blade is posi- 
tioned horizontally. This simplifies the comparison of self-si- 
milar distributions. 

1.3 Existing Approaches to Kenics Mixer Characterization 

The widespread use of the Kenics mixer prompted the attention 
to the kinematics of its operation and attempts to find ways to 
improve its performance. Khakhar et al. [10] considered the- 

so-called partitioned pipe mixer, designed to mimic the opera- 

tion of Kenics. The analogy is incomplete, since the partitioned 
pipe mixer is actually a dynamic device, consisting of rotating 

pipe around a number of straight, fixed, perpendicular placed, 
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rectangular plates'. This device, however, gives the possibility 
to control its efficiency by changing the rotation speed of the 
pipe (which may be considered to be analogous to the twist of 
the blades in a Kenics mixer) and allowed relatively simple 

mathematical modeling using an approximate analytical ex- 
pression for the velocity field. The expression for the velocity 

field (and, consequently, the numerical simulations) was im- 
proved by Meleshko et al. [11], achieving even better agree- 

ment with experimental results of [10]. However, these studies 

were dealing with a simplified model, which fails to catch the 
details of the real flow in a Kenics static mixer. 

The increasing computational power allowed different re- 
searchers to perform direct simulations of the three-dimen- 
sional flow in Kenics mixers [3, 8, 12 to 16]. The last paper 
considers even flows with higher Reynolds numbers up to 
Re = 100. These studies analyzed only certain particular flows 
and, unlike [10], did not allow for the optimization of the mixer 

geometry, due to high cost of 3D simulations. 
More systematic efforts on exploring the efficiency of the 

Kenics mixer were made by [9], who suggested a more energy 

efficient design with a total blade twist of 120°. They explored 
different mixer configurations, but, since the velocity field had 

to be re-computed every time, the scope was limited: only se- 
ven values of the blade twist angle were analyzed. The aim of 

the current work is to study numerically the dependence of the 
mixer performance on the geometrical parameter (blade twist 
angle) and to determine the optimal configuration within the 
imposed limitations. Since it was shown in [9] that the blade 

pitch has rather minor effect on mixer performance, it is fixed 
in the current work. 

The Kenics static mixer was also considered as a tool to en- 
hance the heat exchange through the pipe walls [17]. They 
found that the Kenics mixer may offer a moderate improve- 
ment in heat transfer, but its applicability in this function is 
limited by difficulty of i.e. wall cleaning. However, only mix- 

ers with the “standard” 180° blade twist were considered. In 
the current work we also analyse the influence of the blade 
twist angle on refreshing of material on the tube surface. Re- 

cently Fourcade et al. [16] addressed the efficiency of striation 

thinning by the Kenics mixer both numerically and experimen- 

tally, using the so-called “striation thinning parameter” that de- 
scribes the exponential thinning rate of material striations. This 

! Note that the partioned pipe mixer is actually a simplified model of a 
RR type of Kenics mixer 

Fig. 2. How the Kenics mixer works: the frames show the evo- 

lution of concentration patterns within the first four blades of 

the RL-180 mixer 
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was done by inserting a large number of “feed circles” and nu-
merically tracking markers along the mixer. Their method al-
lows to characterize the efficiency of the static mixer. However,
adjusting the geometry would necessitate repetition of all parti-
cle tracking computations. Optimization of the mixer geometry
calls for a special tool that allows to re-use the results of te-
dious, extensive computations in order to compare different
mixer layouts. A good candidate for such a tool is the mapping
technique.

In this work we take into account the most important results
of [9]. The mapping method is used to systematically study the
performance of Kenics mixers of different geometries (twist di-
rection and angle of the blades) and to find its optimal design.

2 Application of the Mapping Technique to the Kenics
Mixer

2.1 Computational Domain

To implement the mapping approach, the Kenics static mixer is
subdivided into independent functional mixing modules. These
modules are assembled in an appropriate sequence to obtain the
real mixer design. An essential requirement is that the flow in-
side a module can be assumed to be independent on the preced-
ing or following ones. The starting point is to select a computa-
tional domain that contains all necessary features of the mixer,
see Fig. 3A. The direction of the fluid flow is upwards and
although the configuration is simple, it fulfills our require-
ments:
� In order to obtain a fully developed flow in the entrance and

exit conditions inflow and outflow sections are provided
with flat blades that subdivide the tube into two straight
semicircular ducts for which an analytical expression,
known ina closed form [11], is used to specify the boundary
conditions.

� In its central section the flow domain considered contains a
long right-twisted blade with total twist angle of 180�. It is
assumed (and has yet to be verified) that in the middle zone
of the blade, the velocity field is independent of the axial
coordinate, if viewed in a properly rotated reference frame,
aligned with the blade.

� The flat blade in the lower section changes into a right-
twisted blade (with total twist of 90�) that forms a R-R tran-
sition with the following long right-twisted blade of 180�

twist.
� Analogous, in the upper section the 180� right-twisted

blade forms a R-L transition with the following 90� left-
twisted blade that smoothly changes into the exit duct.

This configuration contains all necessary elements and there is
no need to separately compute a velocity field around a long-
left-twisted blade, since it is the mirror image of that of the
right-twisted blade. Similarly, the effect of the L-L and L-R
transition is completely defined by their mirror counterparts
(R-R and R-L transitions, respectively).

Fig. 3B shows the surface of the finite element mesh used to
compute the velocity field, containing 13; 824 second-order
hexagonal elements with 116; 145 nodal points (403; 731 de-
grees of freedom). At the rigid walls a no-slip boundary condi-
tion is prescribed and at both inlet and outlet, a fully developed

Poiseuille profile is prescribed. The fluid is assumed to be
Newtonian with a constant viscosity, unless explicitly stated
otherwise. Under these conditions the axial velocity in the
Stokes flow through a vertical semicircular duct x2 þ y2 < a2,
y > 0 of the radius a can be expressed by the exact analytical
formula [11]. In polar coordinates ðr; hÞ it reads:

uz ¼
2p

p2 � 8
huzi

�
�
�p

r2

a2
sin2 hþ r

a
� a

r

� �
sin h� 1

4
r2

a2
� a2

r2

� �
sin ð2hÞ

� ln
r2 þ 2ar cos hþ a2

r2 � 2ar cos hþ a2

þ 1
2

2 � r2

a2
� a2

r2

� �
cosð2hÞ

� �
arctan

2ar sin h
a2 � r2

�
; ð1Þ

where huzi denotes the average axial velocity. A conjugate gra-
dient solver, implemented in the SEPRAN finite element pack-
age [18] was used to obtain the velocity field inside the mixer.
The solution was then exported from SEPRAN and customary
optimized interpolation routines were used to obtain the veloci-
tyin an arbitrary point inside the fluid domain.
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Fig. 3. Computing the velocity field patterns in the Kenics, A: the flow
domain; B: the finite element grid; C: the velocities at the cross-section
in the middle of the long blade; D: the same, but slightly below the R-L
transition. The contours in (C) and (D) are isolines of the axial velocity
uz , the arrows show the lateral velocity components
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was done by inserting a large number of “feed circles” and nu- 
merically tracking markers along the mixer. Their method al- 
lows to characterize the efficiency of the static mixer. However, 
adjusting the geometry would necessitate repetition of all parti- 
cle tracking computations. Optimization of the mixer geometry 

calls for a special tool that allows to re-use the results of te- 
dious, extensive computations in order to compare different 
mixer layouts. A good candidate for such a tool is the mapping 
technique. 

In this work we take into account the most important results 
of [9]. The mapping method is used to systematically study the 
performance of Kenics mixers of different geometries (twist di- 

rection and angle of the blades) and to find its optimal design. 

2 Application of the Mapping Technique to the Kenics 
Mixer 

2.1 Computational Domain 

To implement the mapping approach, the Kenics static mixer is 

subdivided into independent functional mixing modules. These 
modules are assembled in an appropriate sequence to obtain the 
real mixer design. An essential requirement is that the flow in- 
side a module can be assumed to be independent on the preced- 
ing or following ones. The starting point is to select a computa- 

tional domain that contains all necessary features of the mixer, 
see Fig. 3A. The direction of the fluid flow is upwards and 
although the configuration is simple, it fulfills our require- 
ments: 

e In order to obtain a fully developed flow in the entrance and 
exit conditions inflow and outflow sections are provided 

with flat blades that subdivide the tube into two straight 
semicircular ducts for which an analytical expression, 
known ina closed form [11], is used to specify the boundary 

conditions. 
e Inits central section the flow domain considered contains a 

long right-twisted blade with total twist angle of 180°. It is 
assumed (and has yet to be verified) that in the middle zone 

of the blade, the velocity field is independent of the axial 
coordinate, if viewed in a properly rotated reference frame, 
aligned with the blade. 

e The flat blade in the lower section changes into a right- 

twisted blade (with total twist of 90°) that forms a R-R tran- 

sition with the following long right-twisted blade of 180° 

twist. 
e Analogous, in the upper section the 180° right-twisted 

blade forms a R-L transition with the following 90° left- 
twisted blade that smoothly changes into the exit duct. 

This configuration contains all necessary elements and there is 

no need to separately compute a velocity field around a long- 
left-twisted blade, since it is the mirror image of that of the 
right-twisted blade. Similarly, the effect of the L-L and L-R 

transition is completely defined by their mirror counterparts 
(R-R and R-L transitions, respectively). 

Fig. 3B shows the surface of the finite element mesh used to 
compute the velocity field, containing 13,824 second-order 
hexagonal elements with 116, 145 nodal points (403,731 de- 

grees of freedom). At the rigid walls a no-slip boundary condi- 
tion is prescribed and at both inlet and outlet, a fully developed 
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Fig. 3. Computing the velocity field patterns in the Kenics, A: the flow 

domain; B: the finite element grid; C: the velocities at the cross-section 

in the middle of the long blade; D: the same, but slightly below the R-L 

transition. The contours in (C) and (D) are isolines of the axial velocity 

u, , the arrows show the lateral velocity components 

Poiseuille profile is prescribed. The fluid is assumed to be 

Newtonian with a constant viscosity, unless explicitly stated 
otherwise. Under these conditions the axial velocity in the 
Stokes flow through a vertical semicircular duct x> 4 y? < a2, 
y > 0 of the radius a can be expressed by the exact analytical 
formula [11]. In polar coordinates (r, 0) it reads: 

27 
u; = nz 8 <uZ> 

) 1 2 2 

X {—11:;—2sin2 0+ (g - %) sinf — 2 <;—2 - ?—2> sin (26) 

r?2 + 2ar cos 0 + a2 
X In 

r2 — 2ar cos 0 + a? 

1 2 a2 2ar sin O +5 {2 - <¥ - r_2> cos(le)} arctanfi}, (1) 

where (u,) denotes the average axial velocity. A conjugate gra- 
dient solver, implemented in the SEPRAN finite element pack- 

age [18] was used to obtain the velocity field inside the mixer. 
The solution was then exported from SEPRAN and customary 
optimized interpolation routines were used to obtain the veloci- 
tyin an arbitrary point inside the fluid domain. 
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Two typical examples of the velocity field are given in
Figs. 3C, D. In both images, the contours are isolines of the ax-
ial velocity uz and the arrows indicate the lateral velocity com-
ponents. The upper right image, Fig. 3C shows the velocities in
the mixer cross-section, located in the middle of the long blade.
Interesting is that the distribution of the axial velocity is very
close to the Poiseuille profile for a straight semicircular duct
[11]. Close to the end of the blade the picture, however,
changes significantly and an example of the velocity field
slightly below the R-L transition (at the distance that corre-
sponds to 5� turn of the blade) is given in Fig. 3D. The vicinity
of the next blade, with opposite twist, not only changes the ax-
ial velocity profile, that now has four maxima, but also sup-
presses the lateral velocity in the zones, where the fluid is ap-
proaching the surface of the next blade.

2.2 Mixing Modules

It is necessary to verify our assumption that the mixer can be
represented as a sequence of modules, some describing the
transition regions of blade junctions, others just sections of dif-
ferent lengths with undisturbed velocity fields. To find the dis-
tance from the transitions where the flow can be regarded as
undisturbed, the velocity field was analyzed in more detail,
close to and away from R-R and R-L transitions. A rotational
transformation was applied to bring all cross-sections to the
same orientation and the deviation of the velocity fields from
the reference velocity field, taken in the middle of long blade,
was analyzed. This deviation is defined as

dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

~uui � ~u0u0
ij j2

vuut ; ð2Þ

where ~uui and ~u0u0
i are the velocities at the same location (point

number i) in the disturbed and undisturbed (at the middle of
long blade) velocity field, on a grid of N ¼ 1600 points, dis-
tributed evenly over the cross-section. Its value, scaled with
the average of the absolute value of velocity hvi, is plotted in
Fig. 4A versus the distance from the middle of the blade, which
for convenience is transformed into the turn angle of the blade.
Based on these estimations the transition zones are defined as
spanning the distance corresponding to a 45� turn of the blade.

(The transition zones were even increased in some tests to 60�

in order to minimize errors and to verify the optimization re-
sults. These changes did not make a noticeable difference.)
Far from the transition zones the velocity field will be copied
(with rotational and reflectional transformations) from the re-
ference cross-section.

As will be pointed out in subsection 2.3 the flow tubes must
be traced in order to obtain the mapping matrix coefficients.
The contours enclosing the flow tube are represented by poly-
gons and are tracked using an adaptive front tracking scheme
[19], until they reach the final cross-section. The residence
time for various markers may differ significantly and grows un-
bounded for markers adjacent to the walls, which makes
straightforward tracking complicated. However, since it was
found that regions of back flow are not present in a Kenics mix-
er, and thus the axial velocity uz is positive at any point not lo-
cated on the solid surface, it is possible to follow the trajectory
of particles by using the axial coordinate, rather than time, for
integrating the equations of motion. Along the path line of a
particle the derivatives of transversal coordinates x and y are:

dx
dz

¼ ux

uz
;

dy
dz

¼ uy

uz
: ð3Þ

These derivatives behave smoothly inside the computational
domain and have well-defined limits at the boundaries. Thus,
to facilitate the tracking computations, when a marker is
located too close to the boundary (closer than d ¼ 0:0017R,
where R is the tube radius), the derivatives (3) are replaced by
their values at the nearest internal point located in the same
cross-section at the distance d from the wall. After these sim-
plifications, Eq. 3 are easily integrated numerically over z
using an adaptive Runge-Kutta scheme.

Fig. 4B shows the secondary flow, described by Eq. 3 in the
middle of the long blade, obtained by subtracting the helical
motion that would be caused by rotation together with the
blade. It is clearly seen that the material is being rotated (neces-
sarily deforming) in each of the channels. Note that the plotted
vectors are not approaching zero values close to the walls, since
they were re-scaled with uz, which itself approaches zero there.
This relative pattern shows that material striations, being cut by
the blade, are transported in opposite directions along the
blade: the behaviour clearly recognizable in the experimental
results of [3].
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Fig. 4. Defining the modules for assembling
different mixer configurations, A: finding
how far the disturbances from blade transi-
tions reach. B: revealing the secondary flow
in undisturbed region. The scaled velocities
(3) are shown
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Two typical examples of the velocity field are given in 
Figs. 3C, D. In both images, the contours are isolines of the ax- 
ial velocity u, and the arrows indicate the lateral velocity com- 
ponents. The upper right image, Fig. 3C shows the velocities in 

the mixer cross-section, located in the middle of the long blade. 
Interesting is that the distribution of the axial velocity is very 
close to the Poiseuille profile for a straight semicircular duct 
[11]. Close to the end of the blade the picture, however, 

changes significantly and an example of the velocity field 
slightly below the R-L transition (at the distance that corre- 
sponds to 5° turn of the blade) is given in Fig. 3D. The vicinity 
of the next blade, with opposite twist, not only changes the ax- 
ial velocity profile, that now has four maxima, but also sup- 

presses the lateral velocity in the zones, where the fluid is ap- 
proaching the surface of the next blade. 

2.2 Mixing Modules 

It is necessary to verify our assumption that the mixer can be 
represented as a sequence of modules, some describing the 
transition regions of blade junctions, others just sections of dif- 
ferent lengths with undisturbed velocity fields. To find the dis- 
tance from the transitions where the flow can be regarded as 
undisturbed, the velocity field was analyzed in more detail, 
close to and away from R-R and R-L transitions. A rotational 
transformation was applied to bring all cross-sections to the 
same orientation and the deviation of the velocity fields from 
the reference velocity field, taken in the middle of long blade, 
was analyzed. This deviation is defined as 

TN L 
dv = NZ\W—UO\’ (2) 

i=1 

where @' and up' are the velocities at the same location (point 
number i) in the disturbed and undisturbed (at the middle of 

long blade) velocity field, on a grid of N = 1600 points, dis- 
tributed evenly over the cross-section. Its value, scaled with 
the average of the absolute value of velocity (v), is plotted in 
Fig. 4A versus the distance from the middle of the blade, which 
for convenience is transformed into the turn angle of the blade. 
Based on these estimations the transition zones are defined as 
spanning the distance corresponding to a 45° turn of the blade. 
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(The transition zones were even increased in some tests to 60° 

in order to minimize errors and to verify the optimization re- 

sults. These changes did not make a noticeable difference.) 
Far from the transition zones the velocity field will be copied 

(with rotational and reflectional transformations) from the re- 

ference cross-section. 
As will be pointed out in subsection 2.3 the flow tubes must 

be traced in order to obtain the mapping matrix coefficients. 

The contours enclosing the flow tube are represented by poly- 
gons and are tracked using an adaptive front tracking scheme 
[19], until they reach the final cross-section. The residence 

time for various markers may differ significantly and grows un- 

bounded for markers adjacent to the walls, which makes 
straightforward tracking complicated. However, since it was 
found that regions of back flow are not present in a Kenics mix- 
er, and thus the axial velocity u, is positive at any point not lo- 
cated on the solid surface, it is possible to follow the trajectory 
of particles by using the axial coordinate, rather than time, for 
integrating the equations of motion. Along the path line of a 
particle the derivatives of transversal coordinates x and y are: 

dx  uy dy uy 
_ = = _ = 3 

dz u,’ dz u, (3) 

These derivatives behave smoothly inside the computational 
domain and have well-defined limits at the boundaries. Thus, 
to facilitate the tracking computations, when a marker is 
located too close to the boundary (closer than d = 0.0017R, 
where R is the tube radius), the derivatives (3) are replaced by 

their values at the nearest internal point located in the same 
cross-section at the distance d from the wall. After these sim- 
plifications, Eq. 3 are easily integrated numerically over z 

using an adaptive Runge-Kutta scheme. 
Fig. 4B shows the secondary flow, described by Eq. 3 in the 

middle of the long blade, obtained by subtracting the helical 
motion that would be caused by rotation together with the 
blade. It is clearly seen that the material is being rotated (neces- 
sarily deforming) in each of the channels. Note that the plotted 

vectors are not approaching zero values close to the walls, since 
they were re-scaled with u,, which itself approaches zero there. 
This relative pattern shows that material striations, being cut by 

the blade, are transported in opposite directions along the 
blade: the behaviour clearly recognizable in the experimental 
results of [3]. 

Fig. 4. Defining the modules for assembling 

different mixer configurations, A: finding 

how far the disturbances from blade transi- 

tions reach. B: revealing the secondary flow 

in undisturbed region. The scaled velocities 

(3) are shown 
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2.3 Mapping Matrices

The “mapping” method is proposed based on the original ideas
of Spencer and Wiley [20], and the main idea is not to track
each material volume in the flow domain separately, but to cre-
ate a discretized mapping from a reference grid to a deformed
grid. Within the mapping method a flow domain is subdivided
into N non-overlapping sub-domains Xi with boundaries qXi,
see the example in Fig. 5. The boundaries qXi of these sub-do-
mains are represented by polygons and tracked from z ¼ z0 to
z ¼ z0 þ Dz using an adaptive front tracking model [19], and,
as a result, deformed polygons are obtained. The area of the in-
tersections of the deformed sub-domains with the original
ones, determine the elements of the mapping (or distribution)
matrix W, where Wij equals the fraction of the deformed sub-
domain qXj at time z ¼ z0 þ Dz that is found in the original
(z ¼ z0) sub-domain Xi:

Wij ¼
Z
Xjjz¼z0þDz

T
Xjjz¼z0

dX=

Z
Xjjz¼z0

dX ð4Þ

and are computed using the polygonal descriptions of the sub-
domains. For details on the validation and accuracy of the map-
ping method we refer to [21].

The sub-domain grid, used in determining the mapping ma-
trices, contains 1:6 � 105 cells and has the same structure as
the coarse grid, shown in Fig. 5. The fact that the grid is struc-
tured makes it computationally inexpensive to find in which
cell any specified point is located and what its neighbouring
cells are (which is essential for a fast computation of the map-
ping matrix).

Fig. 6 shows schematically the parts of mixer, described by
the computed matrices (the modules). The matrices denoted
as RR1 and RR2 represent the sections with 45� blade twist
(see Fig. 4) of the transition zones around the R-R transition.
Similarly, RL1 and RL2 matrices describe the R-L transition.
Different matrices representing various amount of twist of the
long R blade were computed, to be precise matrices describing
5�; 10�; 15�; . . . ; 90� twist were used. In Fig. 6 the block, repre-
sented by the matrix R90 (90� twist of the right-turning blade)
is marked. A total blade twist of 90� is the minimum value in

our optimization (entrance and exit transition zones of 45�

each, without an additional module in between). Symmetry
(mirroring transformation) is used to obtain the matrices for
the L-L and L-R transitions and for the left-twisted long L
blade.

When the sparse matrix is determined, its storage is con-
verted into a more conventional column-oriented physically or-
dered packing, similar to what is done in many commercial
packages. Note, that the sparse storage is essential for using
the mapping approach. For example the full matrix, describing
a 90� twist of the long blade, would contain 2:56 � 1010 ele-
ments and would require over 200 Gb of storage memory. At
the same time the flexible storage, used during the computation
of the matrix, only requires 14:8 Mb, while the last, more com-
pact storage algorithm, reduces this value even further to just
11:3 Mb. This makes a simultaneous storage in RAM possible,
as well as handling of multiple matrices simultaneously, on a
modern PC. Loading of a matrix from the disk file typically re-
quires a few seconds.

While the determination of the mapping matrices required
takes some effort (up to 20 hours cumulative CPU time), a
single mapping operation requires only a fraction of a second
of CPU time (of the order of 0:1 second on AMD Ath-
lontm1:0 GHz). Thus, mapping makes it possible to evaluate a
large number of mixer layouts and to proceed with a large num-
ber of blades, while still obtaining the material striations.

3 Macroscopic Homogenization

3.1 Intensity of Segregation

In order to be able to quantitatively compare different mixtures
and, thus, to compare the performance of mixers with various
layout, we use the flux-weighed, slice-averaged, discrete inten-
sity of segregation defined in a cross-section, using coarse grain
concentrations ci in the cells:

I ¼ 1
�ccð1 � �ccÞ

1
F

XN

i¼1

ðci � �ccÞ2 fi;

where �cc ¼ 1
F

XN

i¼1

cifi; F ¼
XN

i¼1

fi; ð5Þ

where fi is the volumetric flux through the cell number i and F
is the total flux through the mixer. The intensity of segregation
is equal to 1 for an unmixed (only white and black cells) distri-
bution and falls to I ¼ 0 for a uniform gray pattern.

Note, that this flux-weighed definition (5) of the intensity of
segregation (as opposed to the area- or volume-weighed defini-
tions used in 2D and 3D closed prototype flows in [7, 22]) is

142 Intern. Polymer Processing XVIII (2003) 2

Fig. 5. Computing the mapping matrix coefficient Wij: the initial sub-
domain Xj is tracked and the intersection of the deformed X0

j after
tracking with Xi is determined

Fig. 6. Scheme if the “building blocks” of Kenics mixers
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2.3 Mapping Matrices 

The “mapping” method is proposed based on the original ideas 

of Spencer and Wiley [20], and the main idea is not to track 

each material volume in the flow domain separately, but to cre- 

ate a discretized mapping from a reference grid to a deformed 
grid. Within the mapping method a flow domain is subdivided 
into N non-overlapping sub-domains €; with boundaries 0€;, 
see the example in Fig. 5. The boundaries 0€; of these sub-do- 

mains are represented by polygons and tracked from z = z, to 
z = 7o + Az using an adaptive front tracking model [19], and, 

as aresult, deformed polygons are obtained. The area of the in- 
tersections of the deformed sub-domains with the original 
ones, determine the elements of the mapping (or distribution) 
matrix ¥, where ¥'j; equals the fraction of the deformed sub- 
domain 0€; at time z = 7y + Az that is found in the original 

(z = zp) sub-domain €;: 

dQ/ dQ (4) 
leZ:Z() 

\Pij = / 
Qjlz=20+Az fl Qjlz=z 

and are computed using the polygonal descriptions of the sub- 
domains. For details on the validation and accuracy of the map- 
ping method we refer to [21]. 

The sub-domain grid, used in determining the mapping ma- 
trices, contains 1.6 x 10° cells and has the same structure as 
the coarse grid, shown in Fig. 5. The fact that the grid is struc- 
tured makes it computationally inexpensive to find in which 

cell any specified point is located and what its neighbouring 
cells are (which is essential for a fast computation of the map- 
ping matrix). 

Fig. 6 shows schematically the parts of mixer, described by 

the computed matrices (the modules). The matrices denoted 

as RR1 and RR2 represent the sections with 45° blade twist 
(see Fig. 4) of the transition zones around the R-R transition. 

Similarly, RL1 and RL2 matrices describe the R-L transition. 
Different matrices representing various amount of twist of the 

long R blade were computed, to be precise matrices describing 
5°,10°,15°,...,90° twist were used. In Fig. 6 the block, repre- 
sented by the matrix R90 (90° twist of the right-turning blade) 
is marked. A total blade twist of 90° is the minimum value in 

Fig. 5. Computing the mapping matrix coefficient V. the initial sub- 

domain Q; is tracked and the intersection of the deformed .Q]’ after 

tracking with Q; is determined 
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Fig. 6. Scheme if the “building blocks” of Kenics mixers 

our optimization (entrance and exit transition zones of 45° 
each, without an additional module in between). Symmetry 
(mirroring transformation) is used to obtain the matrices for 
the L-L and L-R transitions and for the left-twisted long L 

blade. 
When the sparse matrix is determined, its storage is con- 

verted into a more conventional column-oriented physically or- 
dered packing, similar to what is done in many commercial 

packages. Note, that the sparse storage is essential for using 
the mapping approach. For example the full matrix, describing 

a 90° twist of the long blade, would contain 2.56 x 10'° ele- 
ments and would require over 200 Gb of storage memory. At 
the same time the flexible storage, used during the computation 
of the matrix, only requires 14.8 Mb, while the last, more com- 

pact storage algorithm, reduces this value even further to just 
11.3 Mb. This makes a simultaneous storage in RAM possible, 
as well as handling of multiple matrices simultaneously, on a 
modern PC. Loading of a matrix from the disk file typically re- 
quires a few seconds. 

While the determination of the mapping matrices required 

takes some effort (up to 20 hours cumulative CPU time), a 
single mapping operation requires only a fraction of a second 
of CPU time (of the order of 0.1 second on AMD Ath- 

lon'™1.0 GHz). Thus, mapping makes it possible to evaluate a 

large number of mixer layouts and to proceed with a large num- 
ber of blades, while still obtaining the material striations. 

3 Macroscopic Homogenization 

3.1 Intensity of Segregation 

In order to be able to quantitatively compare different mixtures 
and, thus, to compare the performance of mixers with various 

layout, we use the flux-weighed, slice-averaged, discrete inten- 

sity of segregation defined in a cross-section, using coarse grain 

concentrations ¢; in the cells: 

7= IZN:(- c) f; Tol—o P& T 

| N 
where E=§ZCif1, F:Zfia (5) 

i1 = i=1 

where f; is the volumetric flux through the cell number i and F 
is the total flux through the mixer. The intensity of segregation 

is equal to 1 for an unmixed (only white and black cells) distri- 
bution and falls to Z = 0 for a uniform gray pattern. 

Note, that this flux-weighed definition (5) of the intensity of 

segregation (as opposed to the area- or volume-weighed defini- 
tions used in 2D and 3D closed prototype flows in [7, 22]) is 
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much better suited for analyzing continuous mixers, since the
real influence of an unmixed spot on the value of I is propor-
tional to the flux, carried through this spot. The results of using
definition (5) may be somewhat different from the visual im-
pression of the concentration distribution in slices inside the
mixer, since the unmixed patches near the mixer walls, and
especially in the corners between the blade and the pipe sur-
face, are carrying very little flux, as compared to the inner parts
of the channels. One should, though, remember that any de-
crease in the computed intensity of segregation is caused by
two factors: first, the actual homogenization due to mixing
and, second, numerical diffusion of the mapping method due
to concentration averaging in every sub-domain after each
mapping step. Thus, the absolute value of I is only indicative.
However, comparison of the evolution (rate of decrease) of
the intensity of segregation for similar mixers allows to reveal
the configuration that achieves the fastest mixing. This is opti-
mization. We will compare the results of mapping with more
standard methods like Poincar�e sections and, moreover, use
the scale of segregation, or, alternatively, the so-called struc-
ture radius [15, 23] to evaluate the size of the largest unmixed
regions.

Since an ideal mixture is characterized by an intensity of
segregation equal to zero, the rate of its (typically exponential)
decrease essentially characterizes the mixer efficiency. The de-
pendence of I on the axial position, represented by the number
of blades, is illustrated for an RL mixer with different blade
twist angle in Fig. 7A. It clearly shows that in most of the cases
exponential mixing is indeed realized, but that the slopes, the
rates of mixing, vary significantly with the total blade twist an-
gle. This plot does not actually provide information about the
mixer energy efficiency, since mixers with a higher total blade
twist (longer blades) also require more energy to operate due
to larger pressure drop required. Nevertheless, the extremely
low decrease rate of the intensity of segregation for e. g. the
mixer with 270� twist gives a good indication that this config-
uration probably has “dead” zones of regular motion, separated
by KAM boundaries [1]. Fluid contained in such zones does
not mix with the rest of the flow.

Fig. 7B presents the same data as Fig. 7A, but now I is
plotted versus the total pressure drop, given in relative units,
scaled with the absolute value of pressure drop DP� along one
blade of the “standard” RL-180 mixer. Among the configura-
tions presented in both plots of Fig. 7, the mixer with the blade

twist angle equal to 150� achieves the highest mixture homoge-
neity at the lowest pressure drop.

A more precise evaluation was performed by investigating
mixer configurations with a blade twist ranging from 90� to
360� with a step of 5�. The results are summarized in Fig. 8,
where the logarithm of intensity of segregation is plotted as a
function of pressure drop DP (measured in the same units as
in Fig. 7B) and the blade twist angle h. This three-dimensional
plot exhibits a distinctive valley, the bottom of which, in the re-
gion of the larger pressure drops DP, is located around the value
of blade twist angle h ¼ 140�. The small “ripple” visible along
the h ¼ 180� is caused by the fact that for the configurations
with larger h, every blade is modeled with the use of more then
three mapping matrices (as for smaller values), causing a slight
increase in the “numerical diffusion”, introduced by the map-
ping computations (more mapping operations mean more per-
cell averaging). This, however, does not alter the general trend.
Sub-figures a – f of the Fig. 8 illustrate the mixture patterns,
created by mixers with different h at roughly the same pressure
drop. For illustration purposes the pressure drop chosen is rela-
tively low. The mixer with h ¼ 90� creates noticeable “irregu-
larities” in large regions near the tube surface close to the
blades. This effect is milder for h ¼ 120� and, for the optimal
configuration with h ¼ 140�, these badly mixed zones are
small and packed closely to the channel corners. At this loca-
tion their influence on mixer performance is minimal, since
the flux through these zones is low. The mixer with the tradi-
tional value of h ¼ 180� performs well, achieving good distri-
butions, but due to increased pressure drop per blade, it is less
energy-efficient. Finally, it is clear that the poor mixing at high-
er h values, around h ¼ 270� (see Fig. 8E), corresponds to sys-
tems with large regular, dead, zones. With further increase of
the blade twist angle, the mixer seems to work again, but the
high pressure drops required render it inefficient. From Fig. 8
it can be concluded that the preferable blade twist angle for a
RL Kenics mixer, with the pitch angle considered in this paper
(the same as in [3]), operated at close to zero Reynolds number,
with Newtonian fluids, should be h ¼ 140�. The more tradi-
tional value of the blade twist, h ¼ 180�, corresponds to a sharp
slope of the valley in Fig. 8 (line d) and small changes of para-
meters can be expected to have a strong influence on its perfor-
mance, although not necessarily deteriorating it.

Fig. 9 is similar to Fig. 8 but describes the behaviour of RR
mixer. The RR mixer with h ¼ 180� is unable to homogenize
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Fig. 7. Dependence of
the intensity of segrega-
tion on number of
blades (A) and on
scaled pressure drop
(B) for RL mixers with
different blade twist an-
gle
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much better suited for analyzing continuous mixers, since the 
real influence of an unmixed spot on the value of Z is propor- 
tional to the flux, carried through this spot. The results of using 
definition (5) may be somewhat different from the visual im- 

pression of the concentration distribution in slices inside the 
mixer, since the unmixed patches near the mixer walls, and 

especially in the corners between the blade and the pipe sur- 
face, are carrying very little flux, as compared to the inner parts 
of the channels. One should, though, remember that any de- 
crease in the computed intensity of segregation is caused by 
two factors: first, the actual homogenization due to mixing 

and, second, numerical diffusion of the mapping method due 
to concentration averaging in every sub-domain after each 
mapping step. Thus, the absolute value of 7 is only indicative. 
However, comparison of the evolution (rate of decrease) of 

the intensity of segregation for similar mixers allows to reveal 
the configuration that achieves the fastest mixing. This is opti- 
mization. We will compare the results of mapping with more 

standard methods like Poincare sections and, moreover, use 
the scale of segregation, or, alternatively, the so-called struc- 
ture radius [15, 23] to evaluate the size of the largest unmixed 

regions. 
Since an ideal mixture is characterized by an intensity of 

segregation equal to zero, the rate of its (typically exponential) 
decrease essentially characterizes the mixer efficiency. The de- 

pendence of 7 on the axial position, represented by the number 
of blades, is illustrated for an RL mixer with different blade 
twist angle in Fig. 7A. It clearly shows that in most of the cases 
exponential mixing is indeed realized, but that the slopes, the 
rates of mixing, vary significantly with the total blade twist an- 
gle. This plot does not actually provide information about the 
mixer energy efficiency, since mixers with a higher total blade 

twist (longer blades) also require more energy to operate due 
to larger pressure drop required. Nevertheless, the extremely 
low decrease rate of the intensity of segregation for e.g. the 
mixer with 270° twist gives a good indication that this config- 

uration probably has “dead” zones of regular motion, separated 
by KAM boundaries [1]. Fluid contained in such zones does 

not mix with the rest of the flow. 
Fig. 7B presents the same data as Fig. 7A, but now 7 is 

plotted versus the total pressure drop, given in relative units, 
scaled with the absolute value of pressure drop AP* along one 
blade of the “standard” RL-180 mixer. Among the configura- 
tions presented in both plots of Fig. 7, the mixer with the blade 
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twist angle equal to 150° achieves the highest mixture homoge- 
neity at the lowest pressure drop. 
A more precise evaluation was performed by investigating 

mixer configurations with a blade twist ranging from 90° to 
360° with a step of 5°. The results are summarized in Fig. 8, 

where the logarithm of intensity of segregation is plotted as a 

function of pressure drop AP (measured in the same units as 
in Fig. 7B) and the blade twist angle 0. This three-dimensional 
plot exhibits a distinctive valley, the bottom of which, in the re- 
gion of the larger pressure drops AP, is located around the value 
of blade twist angle 8 = 140°. The small “ripple” visible along 

the 6 = 180° is caused by the fact that for the configurations 
with larger 0, every blade is modeled with the use of more then 
three mapping matrices (as for smaller values), causing a slight 
increase in the “numerical diffusion”, introduced by the map- 

ping computations (more mapping operations mean more per- 
cell averaging). This, however, does not alter the general trend. 

Sub-figures a—f of the Fig. 8 illustrate the mixture patterns, 
created by mixers with different 0 at roughly the same pressure 
drop. For illustration purposes the pressure drop chosen is rela- 
tively low. The mixer with 6 = 90° creates noticeable “irregu- 
larities” in large regions near the tube surface close to the 
blades. This effect is milder for 8 = 120° and, for the optimal 
configuration with 6 = 140°, these badly mixed zones are 

small and packed closely to the channel corners. At this loca- 
tion their influence on mixer performance is minimal, since 
the flux through these zones is low. The mixer with the tradi- 

tional value of 6 = 180° performs well, achieving good distri- 
butions, but due to increased pressure drop per blade, it is less 
energy-efficient. Finally, it is clear that the poor mixing at high- 
er 0 values, around 8 = 270° (see Fig. 8E), corresponds to sys- 
tems with large regular, dead, zones. With further increase of 
the blade twist angle, the mixer seems to work again, but the 
high pressure drops required render it inefficient. From Fig. 8 
it can be concluded that the preferable blade twist angle for a 
RL Kenics mixer, with the pitch angle considered in this paper 

(the same as in [3]), operated at close to zero Reynolds number, 
with Newtonian fluids, should be 6 = 140°. The more tradi- 

tional value of the blade twist, 6 = 180°, corresponds to a sharp 
slope of the valley in Fig. 8 (line d) and small changes of para- 
meters can be expected to have a strong influence on its perfor- 

mance, although not necessarily deteriorating it. 
Fig. 9 is similar to Fig. 8 but describes the behaviour of RR 

mixer. The RR mixer with 6 = 180° is unable to homogenize 
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components because it possesses rather large unmixed islands,
which are also present for a wide range of blade twist values.
Not all RR configurations of the Kenics mixer are suffering
from large “dead” zones, see e. g. the RR-110 configuration,
although its efficiency is still noticeably lower than that of the
RL-140 mixer.

From a mixing point of view the RR mixer is much less in-
teresting than the RL mixer. However, some other interesting
applications come to mind if we examine the RR-180 concen-
tration patterns. This typical configuration of the Kenics mixer
can be used to create rather specific structures where two poly-
mers with different properties are mixed in the core of mixer,

enclosed by two large unmixed regions each con-
taining the pure polymer components. Examples of
possible technological applications are:

(i) controlled curling of fibers, mimicking natural
wool, by using two polymers with different thermal
shrinkage, that are, though, closely interconnected
in the middle part, and,

(ii) using a combination of conductive and non-
conductive polymers to produce capacitors etc.

3.2 Influence of a Shear-rate Dependent Viscosity

The results, presented in the previous section were
obtained for Stokes flows of a Newtonian fluid. It is
of interest to see how the rheological properties of
the fluid affect the analysis and the optimization re-
sults. In Anderson et al. [24] the influence of a
shear-rate-dependent viscosity on mixing quality
was examined in time-periodic cavity flows. For dif-
ferent mixing protocols the non-Newtonian beha-
viour could lead to both considerably better and
worse mixing compared to the Newtonian case. Fan
et al. [25] reported similar results for the journal
bearing flow. Here, we study the influence of a
shear-rate-dependent viscosity on the mixing perfor-
mance of Kenics mixers and the viscosity g of the
fluid is described by Carreau-Yasuda model with
zero infinite-shear viscosity (see e. g. [26]):

g ¼ g0 1 þ k2jII2Dj

 �n�1

2 ; ð6Þ
where g0 is the viscosity at zero shear rate, jII2Dj is
the second invariant of the rate of deformation ten-
sor and k and 0 � n � 1 are parameters of the mod-
el. In the examples below, the total volumetric flux
through the mixer is kept the same as before, so that
the average axial velocity huzi ¼ 1. The parameter
k is fixed at k ¼ 10, which ensures that we indeed
enter the shear thinning region, and the power coef-
ficient n is varied. Decreasing the power parameter
n in Eq. 6 makes the axial flow profile more plug-
like, see Fig. 10A. The change of the power para-
meter, while maintaining a constant flux, also re-
sults in a change of the pressure drop, which is illu-
strated in the table in Fig. 10B. Here the pressure
drops corresponding to the first 45� of the blade
next to the RR or RL transition (DPRR and DPRL, re-
spectively) and the pressure drop DP90� along the
90� twisted piece of long blade, are given. For com-
parison, the pressure drop DP� at one blade of the
RL-180 mixeris also presented. The changes in
pressure drop are relevant, since a constant total
pressure drop is chosen as a criterion in determining
the optimal blade twist.
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(a): 11 × 90°

(b): 9 × 120°

(c): 8 × 140°(f): 3 × 360° (e): 4 × 270°

(a): 16 × 90°

(b): 13 × 110°

(f): 4 × 360° (e): 5 × 270° (d): 8 × 180° (c): 10 × 140°

(d): 6 × 180°

Fig. 8. Optimization of the blade twist angle for RL mixer (Newtonian fluid): loga-
rithm of the intensity of segregation is plotted as a function of the blade twist angle
and total pressure drop

Fig. 9. Optimization of the blade twist angle for the RR mixer (Newtonian fluid).
The scale is the same as in Fig. 8, while the concentration profiles correspond to
on average 30 % larger pressure drop then those shown in Fig. 8
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components because it possesses rather large unmixed islands, 
which are also present for a wide range of blade twist values. 
Not all RR configurations of the Kenics mixer are suffering 

from large “dead” zones, see e.g. the RR-110 configuration, 
although its efficiency is still noticeably lower than that of the 
RL-140 mixer. 

(a): 11x90° 

i '_'_‘200 150 100 

0 (b): 9x120° 

(f): 3x360° (e): 4x270° (d): 6x180° (c): 8x140° 

Fig. 8. Optimization of the blade twist angle for RL mixer (Newtonian fluid): loga- 

rithm of the intensity of segregation is plotted as a function of the blade twist angle 

and total pressure drop 

(a): 16 xX90° 

" 

15 300 250 200 
— 

oP S50 0 (b): 13x110° 

(f): 4x360° (e): 5x270° (d): 8x180° (c): 10x 140° 

Fig. 9. Optimization of the blade twist angle for the RR mixer (Newtonian fluid). 

The scale is the same as in Fig. 8, while the concentration profiles correspond to 
on average 30 % larger pressure drop then those shown in Fig. 8 
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From a mixing point of view the RR mixer is much less in- 

teresting than the RL mixer. However, some other interesting 
applications come to mind if we examine the RR-180 concen- 
tration patterns. This typical configuration of the Kenics mixer 

can be used to create rather specific structures where two poly- 
mers with different properties are mixed in the core of mixer, 

enclosed by two large unmixed regions each con- 
taining the pure polymer components. Examples of 
possible technological applications are: 

(i) controlled curling of fibers, mimicking natural 

wool, by using two polymers with different thermal 
shrinkage, that are, though, closely interconnected 
in the middle part, and, 

(ii) using a combination of conductive and non- 

conductive polymers to produce capacitors etc. 

3.2 Influence of a Shear-rate Dependent Viscosity 

The results, presented in the previous section were 
obtained for Stokes flows of a Newtonian fluid. It is 
of interest to see how the rheological properties of 
the fluid affect the analysis and the optimization re- 
sults. In Anderson et al. [24] the influence of a 

shear-rate-dependent viscosity on mixing quality 
was examined in time-periodic cavity flows. For dif- 
ferent mixing protocols the non-Newtonian beha- 
viour could lead to both considerably better and 
worse mixing compared to the Newtonian case. Fan 
et al. [25] reported similar results for the journal 

bearing flow. Here, we study the influence of a 
shear-rate-dependent viscosity on the mixing perfor- 
mance of Kenics mixers and the viscosity n of the 

fluid is described by Carreau-Yasuda model with 
zero infinite-shear viscosity (see e. g. [26]): 

=g [l +2*[Ixp] (6) 

where 1) is the viscosity at zero shear rate, |Ilp| is 
the second invariant of the rate of deformation ten- 
sor and A and 0 < n < 1 are parameters of the mod- 

el. In the examples below, the total volumetric flux 

through the mixer is kept the same as before, so that 
the average axial velocity (u,) = 1. The parameter 
A is fixed at A = 10, which ensures that we indeed 

enter the shear thinning region, and the power coef- 
ficient n is varied. Decreasing the power parameter 
n in Eq. 6 makes the axial flow profile more plug- 
like, see Fig. 10A. The change of the power para- 
meter, while maintaining a constant flux, also re- 

sults in a change of the pressure drop, which is illu- 

strated in the table in Fig. 10B. Here the pressure 
drops corresponding to the first 45° of the blade 
next to the RR or RL transition (APgg and APgy , re- 

spectively) and the pressure drop APgy along the 
90° twisted piece of long blade, are given. For com- 
parison, the pressure drop AP* at one blade of the 
RL-180 mixeris also presented. The changes in 

pressure drop are relevant, since a constant total 
pressure drop is chosen as a criterion in determining 
the optimal blade twist. 

n—1 
2 
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Mapping computations, revealing the dependence of the in-
tensity of segregation on pressure drop and blade twist angle
of the RL mixer, were performed for four different values of
the power parameter n ¼ 1:0; 0:7; 0:4 and 0:1. The evolution
of the intensity of segregation for some RL mixers is shown in
Fig. 11 versus the number of blades and versus pressure drop
Dp respectively. Note that for the large values of the twist angle
the strong shear thinning behaviour can improve the mixer per-
formance, while for small twist angles it deteriorates the
achieved mixture quality. The results of similar computations
for different blade twist angles are summarized in the next fig-
ure. The left plot in Fig. 12 shows the intensity of segregation
versus the blade twist angle h, achieved at cost of apressure
drop DP equivalent to 12 blades of the RL-180 mixer for the
particular fluid, for four values of n. While the fluids with
smaller n require lower pressure drops, the effect of shear thin-
ning on the optimal blade twist is rather moderate. According
to Fig. 12, shear thinning slightly shifts the optimum towards
a larger blade twist and, in general, somewhat reduces the effi-
ciency of the mixer. As an illustration, the concentration pat-
terns after 6 blades of the RL-140 mixer for the Newtonian
fluid (n ¼ 1) and shear thinning fluid with n ¼ 0:1 are also
shown in Fig. 12. These cross-sections look remarkably simi-
lar, except for larger striation thicknesses near the walls for
the shear thinning fluid. Their influence on the mixture quality
(intensity of segregation) is stronger than it seems based on just
a comparison of the two slices, since the shear thinning flow
with its more plug-like profile (see Fig. 10A), carries the thick-
er near-wall striations with a larger relative flux. [23] per-
formed the experiments with different shear-thinning fluids,
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n DPRR DP90� DPRL DP�

1.0 0.2488 0.4621 0.2690 1.0000
0.7 0.1698 0.3216 0.1825 0.6865
0.4 0.1150 0.2209 0.1227 0.4663
0.1 0.0759 0.1461 0.0803 0.3068

B)

Fig. 10. The influence of the shear thinning fluid behaviour on the per-
formance of the Kenics mixer, (A) axial velocity along the radius, per-
pendicular to the blade in the middle cross section of long blade sec-
tion; (B) pressure drop in the various sections of the mixer, scaled on
the pressure drop on a single blade of RL-180 mixer with Newtonian
(n =1.0) fluid

Fig. 11. Dependence of the
intensity of segregation on
number of blades (A) and
on scaled pressure drop (B)
for some RL mixers and its
dependence on shear thin-
ning behaviour

n = 1.0 n = 0.1

Fig. 12. Dependence of the
RL mixer efficiency on the
blade twist angle h for dif-
ferent shear thinning para-
meter n. Intensity of segre-
gation is plotted for the
pressure drop equal to that
of 12 blades of RL-180 mix-
er for the corresponding li-
quid. Concentration pro-
files are shown for n = 1.0
and n =0.1 after 6 blades
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Fig. 10. The influence of the shear thinning fluid behaviour on the per- 

formance of the Kenics mixer, (A) axial velocity along the radius, per- 

pendicular to the blade in the middle cross section of long blade sec- 

tion; (B) pressure drop in the various sections of the mixer, scaled on 

the pressure drop on a single blade of RL-180 mixer with Newtonian 
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Mapping computations, revealing the dependence of the in- 
tensity of segregation on pressure drop and blade twist angle 
of the RL mixer, were performed for four different values of 
the power parameter n = 1.0, 0.7, 0.4 and 0.1. The evolution 
of the intensity of segregation for some RL mixers is shown in 
Fig. 11 versus the number of blades and versus pressure drop 

Ap respectively. Note that for the large values of the twist angle 
the strong shear thinning behaviour can improve the mixer per- 
formance, while for small twist angles it deteriorates the 
achieved mixture quality. The results of similar computations 

for different blade twist angles are summarized in the next fig- 
ure. The left plot in Fig. 12 shows the intensity of segregation 

versus the blade twist angle 6, achieved at cost of apressure 
drop AP equivalent to 12 blades of the RL-180 mixer for the 
particular fluid, for four values of n. While the fluids with 
smaller n require lower pressure drops, the effect of shear thin- 
ning on the optimal blade twist is rather moderate. According 
to Fig. 12, shear thinning slightly shifts the optimum towards 

a larger blade twist and, in general, somewhat reduces the effi- 
ciency of the mixer. As an illustration, the concentration pat- 
terns after 6 blades of the RL-140 mixer for the Newtonian 
fluid (n = 1) and shear thinning fluid with n = 0.1 are also 

shown in Fig. 12. These cross-sections look remarkably simi- 
lar, except for larger striation thicknesses near the walls for 
the shear thinning fluid. Their influence on the mixture quality 
(intensity of segregation) is stronger than it seems based on just 
a comparison of the two slices, since the shear thinning flow 
with its more plug-like profile (see Fig. 10A), carries the thick- 
er near-wall striations with a larger relative flux. [23] per- 
formed the experiments with different shear-thinning fluids, 

Fig. 11. Dependence of the 

intensity of segregation on 

number of blades (A) and 

on scaled pressure drop (B) 

for some RL mixers and its 

dependence on shear thin- 

ning behaviour 

Fig. 12. Dependence of the 

RL mixer efficiency on the 

blade twist angle 0 for dif- 
ferent shear thinning para- 

meter n. Intensity of segre- 

gation is plotted for the 

pressure drop equal to that 
of 12 blades of RL-180 mix- 
er for the corresponding li- 

quid. Concentration pro- 
files are shown for n = 1.0 
and n =0.1 after 6 blades 
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and the influence of shear-thinning behaviour on the mixture
patterns (structure radii were compared) also turned to be
rather minor.

3.3 Alternative Methods and Mixture Quality Measures

One of the classical dynamical tools to analyse chaotic mixing
is the Poincar�e map. In Fig. 13 the concentration patterns after
eight blades of RL and RR mixers, with blade twist h ¼ 180�,
are compared with the corresponding Poincar�e maps. The regu-
lar islands (white regions) revealed by the Poincar�e map
(Fig. 13C) for the RR-180 configuration match the unmixed re-
gions revealed on the concentration slice (Fig. 13D) obtained
using the mapping method for the same flow. The Poincar�e
map for RL-180 configuration indicates that this system is
globally chaotic, which is in complete agreement with the map-
ping results. The lower density of markers in Poincar�e maps
near the trailing and leading edge of the blades (cross-like pat-
terns) is caused by significantly lower axial velocities there.

Until now we only applied the intensity of segregation I as a
measure of the mixing quality. This mixing measure is well sui-
ted to compare the rate of mixing processes and the final mix-
tures, and it is the obvious tool for optimization strategies, as
clearly demonstrated above. However, I does not provide a
quantitative measure of the size of unmixed regions in the mix-
ture. In particular if we are interested in scale-up of mixing de-
vices this becomes important, since, for example, in geometri-
cal up-scaling of the Kenics mixer, I will remain the same,
while the structure radius will be proportional to the mixer dia-
meter. A mixing measure which is related to the structure of the
mixture and which provides a quantitative measure of the size
of unmixed regions is the scale of segregation. This mixing

measure is statistical in nature and was originally
suggested by [27]. The definition of the scale of seg-
regation is based on the so-called correlation coeffi-
cient (normalized correlation function), defined over
the field of concentration cð~xxÞ as [28]:

qð~rrÞ ¼ h½cð~xxÞ � �cc� ½cð~xx þ~rrÞ � �cc�i
h½cð~xxÞ � �cc� ½cð~xxÞ � �cc�i ; ð7Þ

where �cc is the average concentration and the angular
brackets denote an averaging over the whole flow

domain, i. e. over all values of ~xx. The scale of segregation, S,
is normally used for so-called clumpy mixtures [28], where the
correlogram is non-negative and equals zero for j~rrj greater than
some value. S is defined as the volume under the correlogram:

Sð~xxÞ ¼
Z

qð~rrÞ dS: ð8Þ

A practical way to compute the correlation coefficient, de-
scribed by Tucker [28], involves the computation of the power
spectrum of the concentration distribution using fast Fourier
transformations (FFT). In order to do so for the mixture pat-
terns obtained in the Kenics mixer, the concentration slices
were padded by the area of anideal mixture c ¼ �cc to obtain a
square domain and re-discretized using a 1024 � 1024 uniform
rectangular grid. Next, the two-dimensional FFT can be ap-
plied.

The correlogram obtained after four blades of RL-180 mixer
(Fig. 14A), when the lamellar structure is well developed,
shows a narrow central maximum and, typical for layered mix-
tures, an oscillating behaviour of qðrÞ. The plot is arranged in
such a way that the point r ¼ 0 corresponds to the center of
the image. Fig. 14B shows the correlogram of the mixture after
eight blades of the RR-180 mixer. The presence of the unmixed
islands (and roughly their orientation) is indicated by the wide
central maximum, while other details of the mixture are al-
ready lost.

The mixture patterns created by static mixers typically exhi-
bit a lamellar (that is ordered – not a clumpy) structure and the
correlation coefficient is oscillating taking both positive and
negative values. We can extend the definition (8) of the scale
of segregation S for the case under study by computing only
the integral of the correlation coefficient qð~rrÞ within the central
maximum. We used the isoline qð~rrÞ ¼ 0:1 as the boundary of
this maximum to avoid numerical problems (influence of small

146 Intern. Polymer Processing XVIII (2003) 2

Fig. 13. Poincaré maps (A, C) compared with the concentration patterns for corre-
sponding flows (B, D). Concentration patterns are shown after eight blades in both
cases

Fig. 14. The correlograms for the mixtures obtained after four blades of RL-180 mixer, (A) and after eight blades of RR-180 mixer (B) and the de-
pendence of the scale of segregation on the number of blades for few mixer layouts (C). The white contour on correlograms correspond to q > 0.1.
The scale of segregation was computed as an integral of the correlation coefficient within such a zone in the center

RL-180 >RR-180
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RL-180 >RR-180 

Fig. 13. Poincaré maps (A, C) compared with the concentration patterns for corre- 

sponding flows (B, D). Concentration patterns are shown after eight blades in both 

cases 

and the influence of shear-thinning behaviour on the mixture 

patterns (structure radii were compared) also turned to be 
rather minor. 

3.3 Alternative Methods and Mixture Quality Measures 

One of the classical dynamical tools to analyse chaotic mixing 

is the Poincare map. In Fig. 13 the concentration patterns after 
eight blades of RL and RR mixers, with blade twist 8 = 180°, 

are compared with the corresponding Poincare maps. The regu- 
lar islands (white regions) revealed by the Poincare map 
(Fig. 13C) for the RR-180 configuration match the unmixed re- 

gions revealed on the concentration slice (Fig. 13D) obtained 

using the mapping method for the same flow. The Poincare 
map for RL-180 configuration indicates that this system is 
globally chaotic, which is in complete agreement with the map- 

ping results. The lower density of markers in Poincare maps 
near the trailing and leading edge of the blades (cross-like pat- 
terns) is caused by significantly lower axial velocities there. 

Until now we only applied the intensity of segregation Z as a 
measure of the mixing quality. This mixing measure is well sui- 
ted to compare the rate of mixing processes and the final mix- 
tures, and it is the obvious tool for optimization strategies, as 
clearly demonstrated above. However, Z does not provide a 

quantitative measure of the size of unmixed regions in the mix- 

ture. In particular if we are interested in scale-up of mixing de- 
vices this becomes important, since, for example, in geometri- 
cal up-scaling of the Kenics mixer, Z will remain the same, 

while the structure radius will be proportional to the mixer dia- 
meter. A mixing measure which is related to the structure of the 
mixture and which provides a quantitative measure of the size 
of unmixed regions is the scale of segregation. This mixing 

measure is statistical in nature and was originally 

suggested by [27]. The definition of the scale of seg- 
regation is based on the so-called correlation coeffi- 
cient (normalized correlation function), defined over 

the field of concentration c(X) as [28]: 

(e® - kD ) 
PO =@ — o @~ 
where C is the average concentration and the angular 
brackets denote an averaging over the whole flow 

domain, i.e. over all values of X. The scale of segregation, S, 
is normally used for so-called clumpy mixtures [28], where the 

correlogram is non-negative and equals zero for [f| greater than 
some value. § is defined as the volume under the correlogram: 

S@®) = / p(F) dS. (8) 
A practical way to compute the correlation coefficient, de- 
scribed by Tucker [28], involves the computation of the power 

spectrum of the concentration distribution using fast Fourier 
transformations (FFT). In order to do so for the mixture pat- 

terns obtained in the Kenics mixer, the concentration slices 

were padded by the area of anideal mixture ¢ = C to obtain a 
square domain and re-discretized using a 1024 x 1024 uniform 

rectangular grid. Next, the two-dimensional FFT can be ap- 
plied. 

The correlogram obtained after four blades of RL-180 mixer 
(Fig. 14A), when the lamellar structure is well developed, 

shows a narrow central maximum and, typical for layered mix- 
tures, an oscillating behaviour of p(r). The plot is arranged in 
such a way that the point r = 0 corresponds to the center of 
the image. Fig. 14B shows the correlogram of the mixture after 
eight blades of the RR-180 mixer. The presence of the unmixed 
islands (and roughly their orientation) is indicated by the wide 
central maximum, while other details of the mixture are al- 

ready lost. 
The mixture patterns created by static mixers typically exhi- 

bit a lamellar (that is ordered — not a clumpy) structure and the 

correlation coefficient is oscillating taking both positive and 
negative values. We can extend the definition (8) of the scale 

of segregation S for the case under study by computing only 
the integral of the correlation coefficient p(T) within the central 
maximum. We used the isoline p(r) = 0.1 as the boundary of 
this maximum to avoid numerical problems (influence of small 
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Fig. 14. The correlograms for the mixtures obtained after four blades of RL-180 mixer, (A) and after eight blades of RR-180 mixer (B) and the de- 

pendence of the scale of segregation on the number of blades for few mixer layouts (C). The white contour on correlograms correspond to p > 0.1. 

The scale of segregation was computed as an integral of the correlation coefficient within such a zone in the center 
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errors). Fig. 14C shows the dependence of the computed scale
of segregation on the number of blades for a few mixer layouts.
It clearly indicates the presence of islands in two mixers with
blades twisted in the same direction (RR-140 and RR-180)
and in the RL-270 mixer with a large blade twist. The asympto-
tic level of the scale of segregation also gives an estimation of
the size of unmixed zones for the particular mixer geometry.
However, this mixture parameter seems not so useful to rank
the globally chaotic flows according to their efficiency.

Another mixing measure for the scale of the unmixed re-
gions that is used is the structure radius, defined as the maxi-

mum radius of a circle that can be drawn in a con-
centration slice that contains only one, unmixed,
fluid component [15, 23]. Fig. 15 gives some exam-
ples of the structure radius and shows its evolution
with the number of blades for a few mixer configura-
tions. The markers indicate the situations for which
the concentration slices (a – e) are shown. The evolu-
tion of the structure radius provides some essential
information, quickly showing the flows with regular
islands: for these flows the structure radius reaches
some non-zero constant value. This mixture quality
parameter is also less suitable for comparing the effi-
ciency of different mixer configurations, since it
only shows the size of the unmixed patch but not
the flux, carried by it. For example, it overestimates
the importance of unmixed “corners” in Fig. 15E ob-
tained for the RL-140 mixer. These unmixed patches
carry a much smaller flux than the patches of similar
size at any other location will do. Another obvious
disadvantage of this criterium is its computational
cost: to compute the structure radius requires signifi-
cantly more CPU time than a single loop over all
sub-domains, as it is the case for the intensity of seg-
regation. Moreover, the analysis of the less mixed
patterns, with large unmixed patches, requires a
large number of operations, roughly (since the sub-
domain grid is not uniform) proportional to the
square of the structure radius. Nevertheless the struc-

ture radius provides a useful, and physically meaningful, tool
that can be used during scale-up evaluations of different mix-
ers. This is illustrated in Fig. 16, which shows the dependence
of the structure radius on the mixer length for two different
mixers: the reference RL-180 configuration and its two times
larger copy. From these results one can determine, for example,
that, in order to achieve the same value 0:1 of the structure ra-
dius, an approximately three times larger length (1:5 times
more blades) of the larger mixer would be required.

4 Near-wall Material Exchange

4.1 Removing Material from the Pipe Surface

A problem that also could occur in Kenics mixer is the forma-
tion of a degraded material layer on the pipe surface due to high
residence times. Thus, it is of interest to examine how the mate-
rial initially located near the pipe surface is being advected
(whether it leaves the near-wall region and in what time). The
stagnation and degradation at the blades is less prominent:
these surfaces are interrupted at the trailing edges.

To evaluate the “wall cleaning” performance of Kenics mix-
ers, a special initial pattern was used: the marked fluid initially
occupies a ring adjacent to the walls (20 cells wide in
400 � 400 mapping grid). The initial concentration pattern is
shown in Fig. 17A. Fig. 17B, C demonstrate the effect of one
blade of the RL mixers with 90� and 180� blade twist, respec-
tively. Basically, in the range explored a larger blade twist in-
creases the wall clearing effect of a single blade.

The distribution of the material, originating from the near-
wall region in the RL-140 mixer is shown after different num-
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Fig. 15. Dependence of the structure radius (scaled with the mixer diameter) on the
number of blades of various Kenics configurations and examples of the structure ra-
dius detection (A to E)

Fig. 16. Scale-up evaluation of the RL-180 mixer: dependence of the
structure radius (scaled with the diameter of the reference mixer) on
the mixer length. The mixer length is scaled with the length of one
blade of the reference mixer
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Fig. 15. Dependence of the structure radius (scaled with the mixer diameter) on the 

number of blades of various Kenics configurations and examples of the structure ra- 
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errors). Fig. 14C shows the dependence of the computed scale 

of segregation on the number of blades for a few mixer layouts. 
It clearly indicates the presence of islands in two mixers with 
blades twisted in the same direction (RR-140 and RR-180) 

and in the RL-270 mixer with a large blade twist. The asympto- 
tic level of the scale of segregation also gives an estimation of 
the size of unmixed zones for the particular mixer geometry. 
However, this mixture parameter seems not so useful to rank 
the globally chaotic flows according to their efficiency. 

Another mixing measure for the scale of the unmixed re- 
gions that is used is the structure radius, defined as the maxi- 
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Fig. 16. Scale-up evaluation of the RL-180 mixer: dependence of the 
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mum radius of a circle that can be drawn in a con- 
centration slice that contains only one, unmixed, 
fluid component [15, 23]. Fig. 15 gives some exam- 

ples of the structure radius and shows its evolution 
with the number of blades for a few mixer configura- 
tions. The markers indicate the situations for which 
the concentration slices (a—e) are shown. The evolu- 

tion of the structure radius provides some essential 
information, quickly showing the flows with regular 

islands: for these flows the structure radius reaches 
some non-zero constant value. This mixture quality 
parameter is also less suitable for comparing the effi- 
ciency of different mixer configurations, since it 
only shows the size of the unmixed patch but not 

the flux, carried by it. For example, it overestimates 
the importance of unmixed “corners” in Fig. 15E ob- 
tained for the RL-140 mixer. These unmixed patches 
carry a much smaller flux than the patches of similar 

size at any other location will do. Another obvious 
disadvantage of this criterium is its computational 
cost: to compute the structure radius requires signifi- 
cantly more CPU time than a single loop over all 

sub-domains, as it is the case for the intensity of seg- 
regation. Moreover, the analysis of the less mixed 
patterns, with large unmixed patches, requires a 
large number of operations, roughly (since the sub- 
domain grid is not uniform) proportional to the 
square of the structure radius. Nevertheless the struc- 

ture radius provides a useful, and physically meaningful, tool 
that can be used during scale-up evaluations of different mix- 
ers. This is illustrated in Fig. 16, which shows the dependence 
of the structure radius on the mixer length for two different 
mixers: the reference RL-180 configuration and its two times 

larger copy. From these results one can determine, for example, 
that, in order to achieve the same value 0.1 of the structure ra- 
dius, an approximately three times larger length (1.5 times 
more blades) of the larger mixer would be required. 

4 Near-wall Material Exchange 

4.1 Removing Material from the Pipe Surface 

A problem that also could occur in Kenics mixer is the forma- 
tion of a degraded material layer on the pipe surface due to high 
residence times. Thus, it is of interest to examine how the mate- 
rial initially located near the pipe surface is being advected 
(whether it leaves the near-wall region and in what time). The 
stagnation and degradation at the blades is less prominent: 
these surfaces are interrupted at the trailing edges. 

To evaluate the “wall cleaning” performance of Kenics mix- 
ers, a special initial pattern was used: the marked fluid initially 
occupies a ring adjacent to the walls (20 cells wide in 
400 x 400 mapping grid). The initial concentration pattern is 
shown in Fig. 17A. Fig. 17B, C demonstrate the effect of one 
blade of the RL mixers with 90° and 180° blade twist, respec- 
tively. Basically, in the range explored a larger blade twist in- 

creases the wall clearing effect of a single blade. 
The distribution of the material, originating from the near- 

wall region in the RL-140 mixer is shown after different num- 
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ber of blades in Fig. 18. It is clear that some “old” material is
still on the pipe surface after six blades, and the largest non-
cleared areas are near the corners.

The wall-cleaning effect of just two blades is shown in
Fig. 19 for different blade twist angles from 90� to 210�. Again,
we see more efficient cleaning and smaller “corner effects” in

case of large blade twist angles. For mixers with a large blade
twist angle the exchange between the near-wall layer and the
bulk of the flow is improved. The estimations can also be per-
formed regarding the flux of the marked material still in the
wall zone instead of the relative area. The area, however, may
be rather relevant, since the degraded material may solidify on
the wall surface (in that case it is the layer thickness that mat-
ters).

The results presented above may indicate that the mixers,
achieving fast homogenization (like RL-140 layout considered
earlier) may suffer from material degradation more than mixers
with larger blade twist. A possible solution could be to com-
bine short and long blades in the mixer layout, for example in-
serting after certain number of short blades a couple of longer
ones in order to improve clearing of the pipe wall. The mapping
method allows to explore different mixing layouts where the
twist angles may be adjusted independently. Fig. 20 shows
two examples. The first combines long 180� blades with short-
er 120� blades in an alternating pattern 180�=120�=180�=120�.
Although the wall cleaning performance of this layout is better
then that of RL-140 mixer (see Fig. 20B), the homogenization
efficiency is strongly deteriorated: the intensity of segregation
decreases slower then in standard RL-180 case, as it is shown
in Fig. 20A. From a number of tests performed it follows that
similar configurations that have a two-blade RL repeating se-
quence with unequal blade twist angle generally do not mix
fast. However, more complex layouts like shown in Fig. 20
RL-180/120/120/180 (the same blades in different order) do
offer a compromise between, for example, good homogeniza-
tion efficiency of RL-140 layout and wall cleaning features of
simple RL configurations with longer blades. Depending on
the degree of emphasis laid upon the homogenization effi-
ciency and wall cleaning, various Kenics layouts may be se-
lected.

5 Residence Time Distribution

Since material degradation due to excessive residence times or
stagnation effects is an important issue in static mixers, it is
also of interest to analyse the residence time distribution pat-
terns. To include the residence time into the mapping simula-
tions, the increment of the residence time caused by different
mixing modules was computed. The interval of time required
for the material originating for each donor cell of the mapping
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Fig. 17. The clearing of near-wall region by one blade of RL-mixer,
(A) initial pattern; (B) RL-90 mixer; (C) “standard” RL-180 mixer

Fig. 18. The clearing of near-wall region by the RL-140 mixer, (A) two
blades; (B) four blades; (C) six blades

A)

E)

Fig. 19. The clearing of near-wall region by two blades of RL mixers,
(A) initial pattern; (B) h = 90°; (C) h = 120°; (D) h = 150°; (E)
h = 180°; (F) h = 210°

Fig. 20. The dependence
of the intensity of segrega-
tion (A) and residue on
the wall (B) on the pres-
sure drop for some Kenics
configurations. See text
for further explanations
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Fig. 17. The clearing of near-wall region by one blade of RL-mixer, 

(A) initial pattern; (B) RL-90 mixer; (C) “standard” RL-180 mixer 

ber of blades in Fig. 18. It is clear that some “old” material is 
still on the pipe surface after six blades, and the largest non- 
cleared areas are near the corners. 

The wall-cleaning effect of just two blades is shown in 
Fig. 19 for different blade twist angles from 90° to 210°. Again, 

we see more efficient cleaning and smaller “corner effects” in 
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Fig. 18. The clearing of near-wall region by the RL-140 mixer, (A) two 

blades; (B) four blades, (C) six blades 

O
 

W)
 
W
O
 

Fig. 19. The clearing of near-wall region by two blades of RL mixers, 

(A) initial pattern; (B) 0 =90° (C) 0 =120° (D) 0= 150°; (E) 
0 =180° (F)0 = 210° 

case of large blade twist angles. For mixers with a large blade 

twist angle the exchange between the near-wall layer and the 
bulk of the flow is improved. The estimations can also be per- 
formed regarding the flux of the marked material still in the 
wall zone instead of the relative area. The area, however, may 

be rather relevant, since the degraded material may solidify on 
the wall surface (in that case it is the layer thickness that mat- 
ters). 

The results presented above may indicate that the mixers, 
achieving fast homogenization (like RL-140 layout considered 
earlier) may suffer from material degradation more than mixers 
with larger blade twist. A possible solution could be to com- 
bine short and long blades in the mixer layout, for example in- 

serting after certain number of short blades a couple of longer 
ones in order to improve clearing of the pipe wall. The mapping 
method allows to explore different mixing layouts where the 
twist angles may be adjusted independently. Fig. 20 shows 
two examples. The first combines long 180° blades with short- 
er 120° blades in an alternating pattern 180°/120°/180°/120°. 
Although the wall cleaning performance of this layout is better 
then that of RL-140 mixer (see Fig. 20B), the homogenization 

efficiency is strongly deteriorated: the intensity of segregation 
decreases slower then in standard RL-180 case, as it is shown 
in Fig. 20A. From a number of tests performed it follows that 
similar configurations that have a two-blade RL repeating se- 
quence with unequal blade twist angle generally do not mix 
fast. However, more complex layouts like shown in Fig. 20 
RL-180/120/120/180 (the same blades in different order) do 

offer a compromise between, for example, good homogeniza- 
tion efficiency of RL-140 layout and wall cleaning features of 
simple RL configurations with longer blades. Depending on 
the degree of emphasis laid upon the homogenization effi- 
ciency and wall cleaning, various Kenics layouts may be se- 

lected. 

5 Residence Time Distribution 

Since material degradation due to excessive residence times or 
stagnation effects is an important issue in static mixers, it is 
also of interest to analyse the residence time distribution pat- 
terns. To include the residence time into the mapping simula- 

tions, the increment of the residence time caused by different 
mixing modules was computed. The interval of time required 
for the material originating for each donor cell of the mapping 
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grid to reach the destination cross-section was computed. This
time was estimated by tracking a single marker, placed initially
in the centroid of the donor mapping cell. Thus, we imply that
this time characterizes the whole cell. Note, that the residence
time not always can be averaged over the fluid volume. In par-
ticular, the residence time of the material near the rigid wall is
unbounded due to non-slip boundary conditions. As a result,
the mapping technique that uses volume-averaged coarse grain
values may underestimate the high values of residence time,
caused by stagnation on the rigid walls. It may, nevertheless,
produce useful estimations, locating “dangerous” zones. The
residence time is properly incremented on every step and
mapped similarly to the “wall-path”, considered in section 4.

Fig. 21A illustrates the residence time distribution after two
blades of the “standard” RL-140 mixer. The decimal logarithm
of the relative residence time t=t� is shown. The scaling factor
is the “characteristic time” t� ¼ Dz=hvzi during which the par-
ticle that moves with average axial velocity hvzi would travel
the length Dz of the mixer being analysed. The black contours
in Fig. 21A separate the areas where the relative residence time
is larger and smaller then its average value (one – according to
definition). As expected, high residence times are observed
near the walls, especially in the corner regions. The additional
curved strip of material with high residence time, which is
visible in both channels, is the trail of the previous blade.

Fig. 21B, C show the distribution of the relative residence
time after 14 blades of RL-180 and after 18 blades of RL-140
mixers, respectively. These mixer layouts with the given num-
ber of blades have equal total length and, consequently, equal

characteristic times. Both plots use exactly the same gray
scale-map. The maximum residence times observed in the mix-
er with the smaller blade twist are somewhat larger then in the
standard configuration. In both cases old material is concen-
trated near the corners of the channels. For the RL-140 mixer,
however, the zones with old material are reaching further away
from the blade. These results are in the qualitative agreement
with the estimates obtained in section 4. Since the material
with high residence times is found in the corner regions, where
the velocities are low, its contribution to the total flux is rather
low. If the cumulative flux of the material with a residence time
lower then certain threshold is plotted as a function of this
(threshold) residence time, see Fig. 22, it turns that the
RL-140 mixer exhibits an even more step-like profile, as com-
pared to the standard RL-180 configuration.

6 Discussion and Conclusions

The flow in the Kenics static mixer was studied and the depen-
dence of the mixing efficiency on the most relevant geometri-
cal parameter – the blade twist angle – was investigated. The
pitch of the blades was kept constant (as in [3]) and the mixer
configurations with alternating and with the same direction of
blade twist were considered. The velocity field was computed
using a finite element method. To enable efficient modeling of
various mixer configurations, the evolution of concentration
patterns was simulated using the mapping method.

Hobbs and Muzzio [9] studied the performance of the RL
Kenics mixer for different blade twists but, since they had to re-
compute the velocity field every time, only a limited number of
h values could be considered (h ¼ 30� step 30� until 210�).
Using the stretching efficiency as acriterion, they concluded
that a 120� blade twist results in the most energy efficient mix-
er with respect to the pressure drop required. In the current
work the possibility to quickly analyze a wide range of twist
angles with smaller increments (Dh ¼ 5�) yielded a distinct op-
timal twist angle equal to h ¼ 140�. The criterion used to find
this optimum (the volume-flux weighed, slice-averaged, dis-
crete intensity of segregation) seems preferable (and of more
direct nature) above the one used by [9]. Moreover, the map-
ping method reveals the distinct material striations at more ad-
vanced mixing stages then it is typically achievable with mar-
ker tracking [3, 8, 9].

Shear thinning behaviour of the fluid viscosity has only a
surprisingly small effect on the concentration patterns, pro-
duced by the Kenics mixer, confirming the partial results of
[3]. It causes a slight increase of the optimal angle and results
in a somewhat lower efficiency of the mixer. The visible effect
is the increasing thickness of the near-wall material striations.
In general, it appears that we can expect shear thinning to have
a rather moderate effect on mixing behaviour in static mixers
(pressure-driven flows). In drag-driven time-periodic cavity
flows [24] a more significant effect of shear thinning on flow
performance was observed.

The Kenics mixer with all blades twisted in the same direc-
tion (RR) is known to be not efficient, leaving large unmixed
streaks [9]. However, it was found that in a certain range of
twist angles it can also achieve global mixing, although the
mixing efficiency is still noticeably lower then for the mixer
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Fig. 21. The relative residence time log10(t /t*) after 2 blades (A) and
14 blades (B) respectively of RL-180 mixer and after 18 blades of
RL-140 (C). See text for further explanations

Fig. 22. The cumulative fraction of the flux of material with relative
residence time below certain threshold is plotted as a function of the
threshold value. These plots correspond to the residence time distribu-
tions shown in Fig. 21B, C
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Fig. 21. The relative residence time log;(t /t*) after 2 blades (A) and 

14 blades (B) respectively of RL-180 mixer and after 18 blades of 

RL-140 (C). See text for further explanations 

grid to reach the destination cross-section was computed. This 
time was estimated by tracking a single marker, placed initially 
in the centroid of the donor mapping cell. Thus, we imply that 
this time characterizes the whole cell. Note, that the residence 
time not always can be averaged over the fluid volume. In par- 
ticular, the residence time of the material near the rigid wall is 

unbounded due to non-slip boundary conditions. As a result, 
the mapping technique that uses volume-averaged coarse grain 
values may underestimate the high values of residence time, 
caused by stagnation on the rigid walls. It may, nevertheless, 
produce useful estimations, locating “dangerous” zones. The 
residence time is properly incremented on every step and 
mapped similarly to the “wall-path”, considered in section 4. 

Fig. 21A illustrates the residence time distribution after two 
blades of the “standard” RL-140 mixer. The decimal logarithm 
of the relative residence time t/t* is shown. The scaling factor 
is the “characteristic time” t* = Az/(v,) during which the par- 
ticle that moves with average axial velocity (v,) would travel 
the length Az of the mixer being analysed. The black contours 
in Fig. 21A separate the areas where the relative residence time 
is larger and smaller then its average value (one — according to 
definition). As expected, high residence times are observed 
near the walls, especially in the corner regions. The additional 
curved strip of material with high residence time, which is 
visible in both channels, is the trail of the previous blade. 

Fig. 21B, C show the distribution of the relative residence 

time after 14 blades of RL-180 and after 18 blades of RL-140 
mixers, respectively. These mixer layouts with the given num- 
ber of blades have equal total length and, consequently, equal 
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Fig. 22. The cumulative fraction of the flux of material with relative 

residence time below certain threshold is plotted as a function of the 

threshold value. These plots correspond to the residence time distribu- 

tions shown in Fig. 21B, C 
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characteristic times. Both plots use exactly the same gray 
scale-map. The maximum residence times observed in the mix- 
er with the smaller blade twist are somewhat larger then in the 
standard configuration. In both cases old material is concen- 
trated near the corners of the channels. For the RL-140 mixer, 
however, the zones with old material are reaching further away 

from the blade. These results are in the qualitative agreement 
with the estimates obtained in section 4. Since the material 
with high residence times is found in the corner regions, where 

the velocities are low, its contribution to the total flux is rather 
low. If the cumulative flux of the material with a residence time 
lower then certain threshold is plotted as a function of this 
(threshold) residence time, see Fig.22, it turns that the 

RL-140 mixer exhibits an even more step-like profile, as com- 
pared to the standard RL-180 configuration. 

6 Discussion and Conclusions 

The flow in the Kenics static mixer was studied and the depen- 

dence of the mixing efficiency on the most relevant geometri- 
cal parameter — the blade twist angle — was investigated. The 
pitch of the blades was kept constant (as in [3]) and the mixer 

configurations with alternating and with the same direction of 
blade twist were considered. The velocity field was computed 
using a finite element method. To enable efficient modeling of 
various mixer configurations, the evolution of concentration 
patterns was simulated using the mapping method. 

Hobbs and Muzzio [9] studied the performance of the RL 

Kenics mixer for different blade twists but, since they had to re- 
compute the velocity field every time, only a limited number of 
0 values could be considered (8 = 30° step 30° until 210°). 
Using the stretching efficiency as acriterion, they concluded 
that a 120° blade twist results in the most energy efficient mix- 

er with respect to the pressure drop required. In the current 
work the possibility to quickly analyze a wide range of twist 
angles with smaller increments (A0 = 5°) yielded a distinct op- 

timal twist angle equal to 8 = 140°. The criterion used to find 
this optimum (the volume-flux weighed, slice-averaged, dis- 

crete intensity of segregation) seems preferable (and of more 

direct nature) above the one used by [9]. Moreover, the map- 

ping method reveals the distinct material striations at more ad- 

vanced mixing stages then it is typically achievable with mar- 
ker tracking [3, 8, 9]. 

Shear thinning behaviour of the fluid viscosity has only a 
surprisingly small effect on the concentration patterns, pro- 
duced by the Kenics mixer, confirming the partial results of 

[3]. It causes a slight increase of the optimal angle and results 
in a somewhat lower efficiency of the mixer. The visible effect 

is the increasing thickness of the near-wall material striations. 
In general, it appears that we can expect shear thinning to have 
a rather moderate effect on mixing behaviour in static mixers 
(pressure-driven flows). In drag-driven time-periodic cavity 

flows [24] a more significant effect of shear thinning on flow 

performance was observed. 
The Kenics mixer with all blades twisted in the same direc- 

tion (RR) is known to be not efficient, leaving large unmixed 

streaks [9]. However, it was found that in a certain range of 

twist angles it can also achieve global mixing, although the 
mixing efficiency is still noticeably lower then for the mixer 
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with an alternating direction of the blade twist. The computed
optimal twist angle for the RR mixer was close to h ¼ 110�.
The remarkable concentration patterns, created by the RR Ke-
nics mixer in the middle range of twist angles, with two well-
defined unmixed islands separated by exponentially mixed
striations in between (Fig. 9C, D) could have some interesting
technological applications, other than creating a perfect mix-
ture. The size of the unmixed regions is easily controlled by
the blade twist angle.

The scale of segregation can be used to determine the size
and shape of the largest unmixed regions. Its asymptotic level
provides an estimation of the size of the unmixed zones for
the particular mixer geometry, while the shape of the central
maximum on the correlogram indicates their orientation. An
alternative mixing measure that is used in literature is the struc-
ture radius, which has a simple geometrical meaning and is
more “intuitive”. It demonstrates the same trends as found be-
fore with the use of the intensity of segregation, but it requires
more extensive computations for its evaluation. From these
analyses of a rather traditional mixer, as the Kenics static mixer
with its rather simple geometry, it can be concluded that the
mapping method, combined with proper mixing quality mea-
sures, provides a powerful design tool in optimizing mixers
for their performance.
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with an alternating direction of the blade twist. The computed 

optimal twist angle for the RR mixer was close to 68 = 110°. 
The remarkable concentration patterns, created by the RR Ke- 
nics mixer in the middle range of twist angles, with two well- 

defined unmixed islands separated by exponentially mixed 
striations in between (Fig. 9C, D) could have some interesting 

technological applications, other than creating a perfect mix- 
ture. The size of the unmixed regions is easily controlled by 
the blade twist angle. 

The scale of segregation can be used to determine the size 
and shape of the largest unmixed regions. Its asymptotic level 
provides an estimation of the size of the unmixed zones for 

the particular mixer geometry, while the shape of the central 
maximum on the correlogram indicates their orientation. An 
alternative mixing measure that is used in literature is the struc- 
ture radius, which has a simple geometrical meaning and is 
more “intuitive”. It demonstrates the same trends as found be- 

fore with the use of the intensity of segregation, but it requires 
more extensive computations for its evaluation. From these 
analyses of a rather traditional mixer, as the Kenics static mixer 
with its rather simple geometry, it can be concluded that the 
mapping method, combined with proper mixing quality mea- 
sures, provides a powerful design tool in optimizing mixers 
for their performance. 
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