

BRADFORD

ALGORITHMIC JEWELRY
APPLICATIONS IN
GRASSHOPPER 3D

Scott Bradford
Technical Sales Engineer
Gesswein

Bridgeport, CT, USA

INTRODUCTION

Originally developed as a CAD program for boat design, Rhino
has been adopted by numerous industries for general 3D design
applications, including jewelry, architecture, and automotive
design, due to the robust offering of tools and commands for
creating these 3D models in real world dimensions. As each
industry has adopted Rhino for their design applications, each has
created their own ways to increase efficiency during the design
process through the use of plugins that automate, streamline, or
allow more customization for certain repetitive tasks. One such
plugin has become an integral part of Rhino and is now part of the
full installation: Grasshopper 3D.

Released in 2008, Grasshopper is a node-based visible
programming language allowing for parametric or algorithmic
modeling within the Rhino environment. Due to the nature of

how algorithms are created within Grasshopper, we can create
simple inputs that can accomplish complex tasks that would
require multiple steps by a CAD designer on their own. This makes
Grasshopper a powerful tool to automate certain tasks that are
required with each CAD model and streamline the design process.

With the need for automating the creation of certain elements of
jewelry design, such as prong creation or making ring shanks for
example, developers have created entire suites filled with numerous
commands to streamline these processes and make designing
easier and more efficient. Plugins for Rhino like MatrixGold,
CrossGems, and RhinoGold come with a variety of commands

to increase speed, but this comes at a cost. For CAD designers
new to the industry, they can be prohibitively so. While recreating
the commands within these plugins would require extensive
development, education, and time, there is the possibility of

aqdodaavaa

BRADFORD

creating some of these using Grasshopper 3D. Let’s start with the
fundamentals of how Grasshopper works.

HOW GRASSHOPPER 3D WORKS

On the Grasshopper canvas, it starts with a node. The nodes in
Grasshopper perform a variety of different functions such as
creating an input, converting inputs into something new, running
a command similar to a Rhino command, organizing information,
amongst many others. Each node has attachment points on both
sides: ones on the left to receive information as an input, and ones
on the right side to output information to somewhere else as seen
in Figure 1. This is a node designed to contain a curve. This curve
could have been created in Grasshopper through another node or
imported from a Rhino document.

Figure 1: Curve Node

To string inputs and outputs together, we use wires to transfer the
output data of a node to an input of another node. We can have
multiple wires coming from another node into a single input, and
multiple coming from the output. Here’s an example of the creation
of a Sphere within Grasshopper (Figure 1a). In this example we
have a Sphere node on the Grasshopper canvas. It is seeking two
inputs: the base plane to orient the sphere, such as the XY, YZ, or
XZ axes (set to XY by default), and the radius of the sphere. We
have a node called a Panel inputting the number “5” into the radius
attachment of the sphere node using a wire. On the right side of
the node, is the output which is a sphere with a 5 mm radius.

Figure 1a: Panel containing the number “5”
attached to radius input of Sphere node

The resulting sphere is shown within our Rhino document in a
translucent red color. Based on the input method we choose, we
can create static elements like the Panel, simply containing a
number “5”, or we can choose an input method that allows for more
customization. Here’s an example (Figure 1b) of the same sphere
with a Number Slider input that allows us to manually slide the
cursor to adjust the radius value, or key in the specific number of
our choosing.

e

| . Q Base a’. |
E<Hl Sphere D
e D q Radius (-

Figure 1b: Sphere node with a Number Slider

This Number Slider, as with other input elements available within
Grasshopper, can be customized on their own. We can adjust

the title of the slider to be more descriptive, the range of values
available within the slider, and number of decimal points for each
value. As we continue to create our algorithm, the output, in this
case the sphere with a 3 mm radius, can be the input for another
node. In Figure 1c, we are using the output of our sphere node as
an input for another node through a wire, in this case, the Mesh
Brep node. The third node will convert the sphere into a mesh.

aqdodaavaa

BRADFORD

Figure 1c: Output of Sphere node connected to
node that will convert to a Mesh

This is the essence of how Grasshopper works. We have a node
with an input, or multiple inputs, that creates an output, or
multiple outputs. The output of one node is connected to the

input of another through a wire, and so forth down the chain. By
controlling the types of nodes and the inputs we connect to it,

we can automate long chains of commands that are shown in the
Rhino document as a representation, with the intention of bringing
it into the Rhino document for further manipulation. Grasshopper
refers to the process of transferring an output to the Rhino
document as “baking.”

For a practical jewelry operation, we are going to create a Metal
Weights Calculator for our CAD models. In the process, you will
see some of the commands that Grasshopper has to offer, and how
we can create our own customization within the calculator based
on our needs.

CALCULATING METAL WEIGHTS IN RHINO AND
GRASSHOPPER

In order to create our Metal Weights Calculator in Grasshopper,
first we need to understand how metal weights are calculated
within Rhino. This method is generally how jewelry-related plugins
are calculating the necessary amount of metal you will need to
produce the 3D model. In most cases, these plugins will show the
resulting metal estimate in grams or pennyweights, or both, based
on the metal you want to cast.

To calculate the estimated metal weight, we first need to calculate
the overall volume of the 3D model by running the Volume
command within Rhino. This will return the volume of the CAD
model in cubic mm. For this example, let’s say our model returns

a value of 560.245 cubic mm. Next, we must convert that number
to cubic cm. This is done by taking the value from our Volume
command, and divide by 1000, or move the decimal point three
spaces to the left. The resulting value would be 0.560245 cubic cm.
Next, we multiply this value by the specific gravity of the metal we
will be casting with. For this example, we will be using the specific
gravity of 14K yellow gold: 13.07. The result will be in grams.

0.560245 * 13.07 = 7.32240215

The result is 7.32240215 grams of 14K yellow gold required for the
entire model. This number will be rounded to the decimal point of
your choosing when determining required metal amounts. Now we
can break this down through inputs and outputs for Grasshopper.
Our inputs will be the CAD model and the specific gravity of

the metal we will be casting with. We will start with the Volume
command.

For demonstration purposes I have created a size 7 ring, with a half
round shank that measures 1.5 mm x 1.5 mm in Rhino. We need to
import the ring from the Rhino document into the Grasshopper
environment, so we will start by inputting this ring into a

node specifically for storing polysurfaces. In the Grasshopper
environment, polysurfaces are referred to as a Brep. In Figure 2,
you can see the Brep containing the ring polysurface being input
into the Volume node, with the output demonstrated on a Panel.
The output value is 117.872385 cubic mm. In this case, we are using
the Panel node to display output information coming from the
node for easier visualization.

Figure 2: Ring inside Brep node input into Volume
node (result shown in Panel)

aydodavydsa

BRADFORD

Next, we must convert this number from cubic mm to cubic cm.
This is done by dividing the resulting number from the Volume
command by 1000. We will be using a Division node to accomplish
this math. The output of the Volume command is fed into the
input of the Division command, along with a Panel containing the
number “1000.” This is shown in Figure 2a. The resulting value is
0.117872.

ry| Volume
lI (¢ Geometry [§-] I
>° Centroid D m (o}

Figure 2a: Volume Command and Conversion.

Next, we must multiply this number by the specific gravity of the
metal we will be casting with. In this example, we will be casting
with 14K yellow gold which has a specific gravity of 13.07. We will
accomplish this by using a Multiplication node so we can multiply
the output of the division command by the specific gravity of our
metal. This is shown in Figure 2b. The resulting value is 1.540592
grams of 14K yellow gold.

Panel

£ Volume D
(Geometry [
g Centroid D

0 1.540592

Multiplicationl

Figure 2b: Output of Division connected to input of Multiplication
as well as the specific gravity of 14K yellow gold

This is our metal weights calculator in its simplest form. At this
point, we have the capabilities to simply input our model into the
Brep node in our algorithm, and the Panel at the end will display
the required metal in grams for casting this model in 14K yellow
gold. However, in its current form, this calculator is only capable
of computing the metal weights for 14K yellow gold, unless we
physically change the value inside the Panel connected to the
multiplication node to the specific gravity we need. Let’s add some
customization so we can choose any metal we wish with more ease.

In Figure 3, I have replaced the Panel containing the value for the
specific gravity of 14K yellow gold for another type of input called
a Value List. This is a dropdown box where we can customize what
is displayed on the dropdown box, and what value that display will
transfer through the wire. In this case, I have added a list of metals
in the following format:

Plat/Ruth 950 = 21.49

Through this format, the “Plat/Ruth 950” will be displayed on
the Value List, but it will transfer the value “21.49” to the next
node. With this method, the Value List node can contain all of the
precious metals I currently use, and the specific gravities specific
to the alloys I prefer, rather than generic specific gravities found
online for precious metals.

=8| volume
(Geometry (3
g Centroid D

Multiplicationl

0 2.533078

A
Result D
Q8

Metal | Plat/Ruth9s¢ W D

Figure 3: Value List input added to Multiplication
node for more customization

The list of metals currently within my Value List component can be
seen in Figure 3a.

aqdodaavaa

BRADFORD

24K Gold
22K Gold Panel
18K Green {0}
12K Yellow 0 2,533078
18K White ut
18K Red
14K Green
14K Yellow
14K White
14K Red
Metal | Plat/Ruth 950 10K Green
10K Yellow
10K White
10K Red

Palladium
Plat/Ruth 950
Fine Sikver
Sterling Silver
Argentium
Sterilite 55
Ancient Bronze
Vellow Bronze
Pink Bronze

Brass

Copper TER

Figure 3a: Full list of specific gravities to choose from
inside Value List

Already we have made a significant improvement over the standard
industry plugins in that we can input specific gravity values that
are specific to certain alloys to make our estimates more accurate.
When looking to purchase precious metals like gold, the amounts
you buy are typically sold in pennyweights (dwt). To make our
metal estimates easier to visualize, let’s add in a conversion that
will take the gram value and convert it to pennyweights. We will
still keep the Panel containing the gram output of the metal in case
we need it. To convert grams to pennyweights, we must take the
value in grams and divide by 1.555. In Figure 4, I have connected
the output of the Multiplication node (our metal weight in grams)
and connected it to the input of a new Division node. I have also
added a Panel with the value “1.555”, and the result is displayed

on a second Panel. The two Panels have been labeled with “Metal
Weight (g)” and “Metal Weight (dwt)” for easier identification. This
is shown in Figure 4.

Metal Weight (g)

{0}

Metal Weight (dwt)
(o}

0 1.62893%
d D

Multiplicat§0n|

Metal | Plat/Ruth 950 W D

Figure 4: Conversion from grams to pennyweights using
Division node (panels have been labeled)

Let’s keep going. At this point we have a fairly accurate estimate of
the CAD model based on the alloys we specifically use. However,
when casting we also know that extra metal must be added to
account for the button. When casting a single item or tree, it is
generally accepted that adding around 10% extra metal will allow
the casting to fill properly. To calculate this, we must take the value
in grams or pennyweights, multiply by 10%, and add that amount
to the overall estimate. In Figure 4a, we run a wire from the output
of the Multiplication node producing our metal weight in grams

to another Multiplication node that will multiply that value by 0.1
(10%0). This result is connected to an Addition node. The other
input of the Addition node is connected to the same output that
provided our metal weight in grams. The resulting metal weight in
grams, including the 109 for the button, has been displayed on a
Panel that is labeled. This process will be repeated for the weight in
pennyweights.

Hivsal Woight (g1 (et Weight ang -
0 2.532078 01.628989 q P
u
«Hl

Figure 4a: Metal Weights plus Button

aqdodaavaa

BRADFORD

At this point, we have a metal weights calculator that will provide
estimates based on our own specific alloys, as well as providing
estimates in grams and pennyweights for both the CAD model
alone, and the extra we will need for casting. Because we are
automating the math involved with calculating these values,
already we have surpassed what is widely available with the plugins
available for jewelry making. However, we have already made a
mistake.

When calculating metal weights, we start by determining the
volume based on a known quantity: the specific gravity of our
starting material. In the case of lost wax casting, this can be a
carving wax, injection wax, or with 3D printers being ubiquitous in
our modern age, a castable resin. Specific gravity is essentially its
relative density compared to another known quantity against which
all materials are compared: the density of water. The density of
water equals 1, and all other densities of materials are represented
as a comparison. So, the mistake we made was assuming that our
starting material is equal to 1, or the specific gravity of water.

In lost wax casting, we know about this discrepancy and largely
ignore it since the specific gravity of our injection wax or castable
resin is simply “close enough” and we are adding extra to account
for that discrepancy, as well as having an adequate amount of metal
for the button which the casting can draw from during cooling and
prevent defects. What if we could calculate the specific gravity of
our starting material and input that into our calculator for even
more accurate estimates? To calculate the specific gravity of a
material, we need to perform the following calculation:

Weight in Air/(Weight in Air - Weight in Water) = Specific Gravity

By weighing the starting material in air, as well as weighing in
water with a scale sensitive enough to provide measurements to

at least two decimal points, and performing the above calculation,
we can determine the specific gravity of the starting material more
precisely. For the following example, we have determined that the
specific gravity of our castable resin is 1.17. Now let’s add this into
our calculator. T'o add this value into our calculator, the 1.17 specific
gravity of our castable resin must be multiplied by the output from
our Volume command.

In Figure 5, a multiplication node was added to multiply the
Volume output by 1.17, and a panel was added after converting the
volume to cubic cm to visualize the resulting weight in wax or 3D
printed resin.

Figure 5: Print Weight panel added after converting
multiplying volume output by 1.17

My personal motto is, “anything worth doing is worth overdoing”,
so let’s take this one step further and clean the algorithm up. In
Grasshopper, you have the option to create what is called a cluster.
A cluster is a full algorithm contained within a node. We can create
the inputs and outputs of the node, and give them the names we
want, so rather than having all of the individual elements of the
algorithm visible, they can be contained in one, easy-to-use node.
First step is to define our inputs and outputs. We know that the
CAD model from the Rhino document, and the specific gravities of
our metals will be our inputs.

To define our inputs and outputs, we will bring in the node
“Cluster Input” for our inputs, and “Cluster Output” for our
outputs. Within this node, we can give the inputs/outputs a title,
nickname, and description as seen in Figure 5a.

NNNNNNNN

io
]
©
=2
=
£
q E}
=

Figure 5a: Customization within Cluster Input node

aqdodaavaa

BRADFORD

The above Cluster Input node will be used to upload our CAD
model into the algorithm. The title will be called “CAD Model”
with a description of how to upload the model into the input. The
Brep node we originally used will be deleted, and the Cluster Input
installed in its place. The process will be repeated with the Value
List input we used to select the metal we are casting with.

We also repeat this process with our Cluster Output nodes. We
will give them a name, nickname, and description of our choosing,
and replace the Panels we originally used to display our outputs
with the Cluster Output nodes. After completing the creation

and labeling of our Cluster Inputs and Outputs, this is how our
algorithm looks currently. See Figure 5b.

Figure 5b: Adding Cluster Inputs and Outputs to Algorithm

Lastly is the creation of the cluster. This is done by selecting
everything in the algorithm and selecting Create Cluster. 1

have kept the Value List Input for easier selection of metals

and connected Panels to each output of my cluster for better
visualization. As you can see, the resulting cluster is much

cleaner to look at and easier to understand, and the Panels can be
organized as you see fit. Figure 5¢ shows the creation of the Cluster
with the Value List input connected, and Figure 5d shows the
finished cluster.

Print Weight

CAD Model Metal Weight (g)

Casting Weight (g)

Cluster

Metal Metal Weight (dwt)

(Metal | PlayRuthoso Y
Casting Weight (dwt)

Figure 5c: Creation of the Cluster

Metal Weight (g) Casting Weight (g)
| or !)
0 2.963701 HO 3.260071

| Print Weight P

q CAD Model E Metal Weight (g) P

Weight (g) P

)) = letal Weight (dwt) D

=8l Casting Weight (dwt) D

Metal | Plat/Ruth 950 W

Metal Weight (dwt) Casting Weight (dw1)
©) 10}

Figure 5d: Finished Metal Weights Calculator Cluster

Whether to create clusters for your algorithms are up to the end
user and how they prefer to operate it. The algorithm within

the cluster can be opened at any time to make any required
adjustments, and further inputs and outputs can be added as
well. Descriptions can be added to the clusters themselves, and
passwords can be created to protect proprietary algorithms in the
case of distribution.

SUMMARY

The benefit of this is that by dialing in a more accurate metal
estimate of our CAD model based on the specific gravities of our
starting material and our preferred alloys, we can more accurately
provide cost estimates over the long term for both metal and
starting material. This can result in less metal tied up in buttons
and scrap and more left in usable grain. There is the possibility

to experiment with the extra 10% of metal as well. While the
extra metal is designed to provide additional functions beyond
accounting for the discrepancy in our wax to metal calculations,

I believe there is room for adjustment with that number based on
the casting method you are performing, the metal alloy you are
using, and the design you are casting. This level of testing would be
another paper for another day.

Without getting into a debate about whether this level of
granularity is necessary or not, it serves as a useful demonstration
of the customization within Grasshopper to construct algorithms
with the parameters we specify, however granular or general, and
was created at no cost other than an investment of time. Could
we go even further and calculate the actual metal cost with some
multiplication nodes and a number slider representing current

aqdodaavaa

BRADFORD

metal prices? Yes, we could. Could we apply this same algorithm
and substitute the specific gravities of metal for the specific
gravity of diamonds and set the outputs to display in carats
through conversion factors? Yes, we could. This is the power of
customization within Grasshopper.

PLUGINS FOR THE PLUGIN

As stated previously, Grasshopper started as a plugin for

Rhino back in 2008. Since then, a vast number of plugins have
been created specifically for Grasshopper to grant additional
functionality to the base install. Some are more general, offering
commands that can be applied to an array of algorithms, others
being highly specialized for a certain industry. These can be
utilized within the existing Grasshopper environment to expand
functionality and provide more options for customization.

These can range from an enhanced UI for your Grasshopper
algorithms for better visualization, pattern generation that is fully
parametric, engineering resources providing collision detection,
or cell generation, amongst many others. For jewelry, plugins

like Grasshopper Gold and even CrossGems are built with user
interfaces directly in the Rhino environment, using Grasshopper as
the backbone. Let’s examine some special use cases created using
the nodes available in Grasshopper, as well as various plugins.

RING RAIL GENERATOR

Every ring design with Rhino must start with a circle in the
required ring size for sweeping a ring shank. In Figure 6, a ring rail
generator was produced that creates the circle using a Value List
as an input for ring size. The Value List contains a display of the
ring size which outputs the exact diameter of the ring size into the
circle command.

Figure 6: Ring Rail Generator

In the interest of customization, this generator has been
constructed in a way that will “bake” the circle into our Rhino
environment and carry additional information with it. The
“Confirm” button will bake the circle into Rhino, create a new layer
with a title identifying it as a ring rail, includes the ring size for
better visualization, and assigns the layer color of our choosing for
organization. See Figure 6a.

Layers

BRHHXOoavIdTH=®

Q, Search

Layer Material |
Default W [I C
Ring Rail 527 PO C

Figure 6a: Layer identifying Ring Rail with size and assigned color

GEM GENERATOR

This example shows a Gem Generator using a plugin known as
Peacock. Peacock is a plugin for Grasshopper specifically for
jewelry. This algorithm has been customized to produce standard
gemstone sizes, as seen under the section “Uniform Stones”, as
well as gems with custom dimensions under the section “Custom
Dimensions.” This Gem Generator was also constructed to produce
a curve around the gemstone that aids in creating settings. See
Figure 7. The entirety of the algorithm is shown in Figure 7a.

Figure 7: Gem Generator in Uniform and Non-Uniform
sizes with accompanying curve

aydodavydsa

BRADFORD

Figure 7a: Entirety of Gem Generator algorithm

RING RAIL & CENTER STONE

This example demonstrates combining two different algorithms,
the Ring Rail Generator and Gem Generator, together with extra
functionality to create a ring rail and center stone in one algorithm.
A ring rail is generated with a layer showing the ring size in the
Layer name for easy identification, a stone is generated in either
Round or Fancy shape, a gem curve for creating a setting, as well
as a separate layer showing the Gem Size in the Layer name. Extra
functionality has been added to control the distance from the

top of the ring rail to the bottom of the culet. See Figure 7b. The
entirety of the algorithm can be seen in Figure 7c.

il | ‘

Figure 7b: Combined Ring Rail and Gem Generator
with extra functionality

Figure 7c: Entirvety of the Ring Rail and Center Stone Generator

MILLGRAIN GENERATOR

This example demonstrates a simple millgrain generator from a
curve generated from a 3D model in Rhino. The curve from the
model is input into the Curve node, then the distance between the
spheres, dimensions of the spheres, and the start and end points
can be modified. The result can be automatically baked into the
Rhino document with the Confirm button. This algorithm has also
been modified to assign the resulting millgrain to its own Layer
within Rhino, along with its own color, for easier identification and
organization. See Figure 8.

Figure 8: Millgrain Generator with full customization

RING BAND GENERATOR

This example was created to generate ring bands with full
customization of the ring size, choice of profile shape, width,
thickness, and fillet (rounding of sharp edges). There are three
profile shapes to choose from: Rectangle, Half Round, and Half
Round with Flat sides. This algorithm was created using a plugin

adosaavida

BRADFORD

to provide an easy-to-use interface within the Rhino environment
to adjust these parameters, and the Confirm button will bake the
ring into Rhino. The UI plugin is managed within Grasshopper. See
Figure 9 for the custom UI and the resulting band represented in
Rhino. See Figure 9a for the algorithm within Grasshopper.

BAND CREATCR

Ring Size | g

Band Style | Fiat Half Round

q
Width L]

Figure 9: Band Generator with UI plugin

Figure 9a: Band Generator algorithm in Grasshopper

GEM SEAT CUTTERS

This example was created to quickly add cutters for gemstone seats
when setting melee stones. Functionality has been added to control
offset of the cutter at the girdle in the event of stone size variation,
ability to control the height at the girdle, and overall depth to
minimize culet chipping during setting. See Figure 10. The entirety
of the algorithm can be seen in Figure 10a.

o A K 0% 6RO

H-e-u 00 220

Figure 10a: Entire Gem Cutters algorithm

PRE-NOTCH MELEE CUTTERS

This example was developed for the creation of pre-notched
settings, whether setting a center stone or melee. Functionality has
been added to adjust the crown angle of the cutter, girdle offset to
account for any size variations in the stones, and adjustment of
girdle thickness. See Figure 10b. The entirety of the algorithm can
be seen in Figure 10c.

adosaavida

N RSP S SR [R BRO)

Figure 10c: Pre-Notched Cutters Algorithm

CATHEDRAL RING BUILDER

Extensive customization has been added to this Cathedral Ring
Builder. By inputting a Ring Rail created from our Ring Rail
Generator, we are able to control the angles of the shoulder at the
start and mid-point where it angles upwards, the overall height

of the cathedral, as well as the distance of the opening at the top.
Further customization has been added to switch between three
profile shapes for the outer ring: Rectangle, Half Round, and Flat
Half Round. Control of Height, Width, and amount of Fillet has
been added to all three profiles. A Bridge section has been added
with control over Height, Width, and amount of Fillet, as well

as the ability to toggle a bulge in the center of the bridge. The
purpose of the bulge is to create more room if the cathedral will
be used to set a Peg Head Setting into the bridge, or can be an
overall design feature. See Figure 11 showing the Cathedral Builder
with a rectangle profile and no bulge on the bridge, and Figure 11a
showing the Cathedral builder with a Flat Half Round Profile with
Bulge added. Figure 11b shows the entirety of the Cathedral Ring
Builder algorithm.

s PR RRIX R W RHDI D
aE>» Hk-e-y 0@ B

]

Figure 11: Cathedral Builder with Rectangle Profile and no Bulge

Py

Figure 11a: Cathedral Builder with Flat Half Round
Profile and added Bulge

BRADFORD

N AT

l&—'\a-&'—‘ S

Figure 11b: Cathedral Ring Builder Algorithm

FOUR-PRONG HEAD BUILDER

This example was created to generate a basic four-prong head

for a center stone. While somewhat basic in its current form,

the algorithm offers the ability to customize upper and lower
gallery rails by adjusting height and horizontal offset of both,
profile height, width, internal chamfer on the upper gallery rail,
and outside angle to create a taper in line with the prongs. Prong
customization includes prong thickness, width, height above stone,
and the ability to nudge the prongs inward or outward without
changing dimensions. See Figure 12. Additional functionality has
been created to allow for upload of a ring rail, and a toggle where
the lower gallery rail will conform to the ring rail. Toggle is labeled,
“Fit to Rail”. Can be used effectively with the Ring Rail and Center
Stone Generator. See Figure 12a. Algorithm shown in its entirety in
Figure 12b.

FIN V 77
Figure 12: Four-Prong Head Builder

Figure 12b: Four-Prong Head Builder Algorithm in Grasshopper

Another addition was made to the Four-Prong Head Builder
allowing for extra features to be generated when making heads

for post earrings. Due to the need to have a bar on the bottom of
the setting to connect the post, functionality has been added to
generate the bar with control over the width, and the height is
designed to match the height of the bottom gallery. The bar can be
toggled on and off using the drop-down box. See Figure 12c.

adosaavida

BRADFORD

I (7 . Ve wxy

ett! | Thy
"‘ | ...

~ N Post Earrings
>

Earring Post Bar | Yes W/ D

\

Figure 12¢: Four-Prong Head Generator with Bar for Post Earring

In addition, the option to create a locating dimple to the bar itself
has been added. The function of the locating dimple is so the
operator that will be soldering the posts to the head will have an
exact location where the post needs to be soldered on, and the
post will lock into that spot. Control over the dimple diameter and
depth has been added for extra customization. This feature can be
toggled on and off with a drop-down box. This is shown in Figure
12d.

Post Earrings

Earring Post Bar | Yes W/ D

Figure 12d: Locating Dimple added to Bar on
Four-prong for Post Soldering

This use case demonstrates how existing algorithms can have extra
functionality added after the fact with features that can be toggled
on and off depending on the design needed.

SUPPORT BASE GENERATOR FOR 3D PRINTING

This example was created to add a support base to an existing ring
design. Full customization has been added for the depth, radius in
X, and radius in Y for both the top and bottom of the support base.
Depth at the top will increase the overlap with the ring geometry,
and bottom depth will increase overall height of the support based
on personal preference. The algorithm has been duplicated and
adjusted so it can accept polysurfaces or meshes. Support base is
automatically Boolean unioned to the polysurface or mesh. See
Figure 13. Both algorithms for polysurfaces and meshes shown in
Figure 13a.

Figure 13a: Support Base Generator in Grasshopper

CUFF BRACELET GENERATOR

This example was created to quickly generate cuff bracelets based
on the customer’s wrist dimensions. The first part of the algorithm
allows you to input the width and height of the customer’s wrist, as

adosaavida

BRADFORD

well as the amount of opening at the bottom they prefer. The actual
opening size is demonstrated as an annotation inside the Rhino
environment. Further customization has been added to provide
three different profile shapes through the choice of a drop-down
box: Rectangle, Half Round, and Flat Half Round. With all three
profiles, options have been added to control the width, thickness,
and amount of fillet for each profile. Furthermore, the algorithm
was constructed in a way where the inner and outer surfaces can be
extracted as one surface, allowing for designs to easily be added to
the entire inner or outer surfaces of the bracelet. Figure 14 shows
the interface and resulting bracelet. Figure 14a shows the algorithm
in its entirety.

Figure 14a: Cuff Bracelet Generator Algorithm

The benefit of these types of algorithms is that they can automate
the more repetitive operations with most jewelry designs, such

as building settings, millgrain, or preparing for 3D printing. In
addition to creating elements or serving as calculators alone, as

we have already seen, these algorithms can also be strung together
to create more complex algorithms that can, for example, input

a model into an algorithm that will generate the metal weight
estimates, automatically scale for casting shrinkage, and apply a
support base for 3D printing in one go, or however the user wants
to organize and combine based on their needs. The use cases above
are meant to serve as a demonstration of what is possible within
Grasshopper for creating design elements, calculating needed
values, or adding our own personal customization, but this is only
the tip of the iceberg.

CONCLUSION

The purpose of this paper was to introduce the reader to one

of the largest underutilized resources within Rhino from a

jewelry perspective, while giving insight into how Grasshopper
works, providing a lesson on something the reader can make for
themselves, and further use cases for how it can be utilized with
continued practice. While Rhino has a significant upfront cost

on its own, the most competent jewelry plugins on the market

can be 5-8X the cost of Rhino. With an investment of time and
persistence, some of the resources found in those expensive
plugins can be made within Grasshopper and made to the
specifications of the end user to be more precise or tailored to

the desired end result. All of the Grasshopper plugins used in the
demonstrated use cases are all free of charge and available for
instant download. This presents an interesting opportunity for
users working within Rhino currently or are getting into Rhino and
cannot afford the professional level plugins. Grasshopper requires
a different type of thinking to be successful, but then again, so does
creating a jewelry design in Rhino.

REFERENCES
« Rhino 3D CAD Software: https://www.rhino3d.com/
- Grasshopper 3D: https://www.grasshopper3d.com/
« Matrix Gold CAD Software: https://gemvision.com/
« CrossGems Jewelry Plugin for Rhino:
https://www.crossbytes3d.com/
« Peacock Plugin for Grasshopper 3D:
https://www.food4rhino.com/en/app/peacock
« Rhino Gold: No longer available

TRAINING
Infroduction fo Generative Jewelry Design:
https://www.akiyomatsuoka.com/grasshopper-training

aqdodaavaa

