(6)

CHALKWELL HALL JUNIOR SCHOOL

MATHEMATICS POLICY

Co-ordinators: Mr Maskell, Mrs Harris \& Mr Baldwin

Reviewed and Approved by:
Date:

Governing Body
March 2023

Intention

It is the intention of our mathematics curriculum to provide pupils with a secure understanding of number, geometry and data. We wish to develop pupils who are fluent in arithmetic, and can make reasoned responses to problems using logic and understanding. It is our intention to develop pupils' skills through discussion and the use of the concrete/pictorial/abstract approach so that everyone can access a mathematics curriculum that offers support and challenge to all abilities. We wish to develop pupils who are confident and resilient, and can develop a love of mathematics in order to succeed.

Implementation

At Chalkwell Hall Junior School, we follow the Maths - No Problem scheme of work, which is based on the Singapore approach to teaching maths. This system provides high quality teaching resources and lesson plans for all year groups, and provides pupils with the level of challenge appropriate to their year group. Class teachers will then differentiate to meet the needs of individual learners. The Maths - No Problem scheme provides long-term, medium-term and short-term planning. Teachers differentiate the Maths - No Problem approach to meet the needs of their class/set.

In years 3 and 4, mathematics is taught within registration classes. In years 5 and 6, mathematics is taught in sets. The hierarchy of these sets is considered every year in order to best meet the needs of the cohort. In general, there will be challenge sets and support sets. The organisation of these sets is initially determined by:

- their previous year's experiences and results (formative and summative)
- information gathered from their teachers regarding attitude and motivation
- baseline assessments

All pupils must have regular access to mathematics, appropriate to their stage of development. Work must be differentiated to aid all pupils' learning. Support will be given in a variety of ways including resources and adult support. Challenge will be provided for our more-able pupils through a variety of mastery tasks. Where a pupil has been identified as having specific needs, these are addressed as part of their ISP.

Alongside mathematics classes and sets, pupils may be taken out for further small group intervention work with qualified teachers and/or support staff to secure their understanding or to allow opportunities for prelearning to prepare them for upcoming challenges.

To promote pupils' rapid recall of key number facts, the school runs two whole-school progressive challenges that alternate weekly. Pupils who achieve the challenge that week receive either a certificate (bonds) or a star (tables) and their achievements are celebrated in assembly. Each class teacher also gives a weekly Maths Champ award during Friday's celebration assembly.

In order to support pupils in their learning, both at home and at school, they are provided with access to Times Tables Rockstars/Numbots and MyMaths. Regular homework and competitions are set on these programs.

Mathematics is complemented by worthwhile and challenging cross-curricular tasks that provide opportunities for pupils to use and apply their subject knowledge to deepen understanding.

Impact

Pupils mark their work on a daily basis and teachers identify pupils who require support and/or further challenge. Pupils self-assess against the learning objective using the whole-school three-tick system. Feedback marking is provided on a weekly basis in order to re-inforce and extend pupils' knowledge and understanding.

Pupils' progress and attainment is recorded using the online Learning Ladder program. This provides teachers with data to measure progress and identify gaps in order to inform planning. Regular meetings are held in order to analyse the data and create intervention groups according to the cohort's needs.

Key objectives are used by the teachers in order to assess whether pupils are working towards the expected standard, within the expected standard or at greater depth. In years 3 to 5, Maths - No Problem Insights is used to provide a summative assessment twice a year. In year 6, SATs papers are used to provide a summative assessment on a half-termly basis. The data provided by these tests is used to inform future teaching.

Year 6 take part in the national SATs in May, and the Multiplication Tables Check is undertaken by year 4 pupils in June.

Regular monitoring is undertaken by the Area of Learning Team to ensure quality of teaching and learning.

Calculation Policy

Below are the examples of how key written strategies are delivered through the school in line with the Maths No Problem approach to teaching.

Addition

Subtraction

Salep 2

Four/Five	I can subtract 4 digit number decimals in context using formal column subtraction.	Which is more expensive, \square $\because \quad$ or ? How much more expensive is it? (2) picks $15-e_{4.05}$ and ${ }^{\text {E4.05 }}$ and								
		£1.30	(1)	0.10 .10 .1	$\begin{array}{r} £ 1.3 \\ -£ 0 \\ -£ 0.8 \quad 0 \\ \hline \end{array}$				$\begin{array}{\|l\|} \hline 0.010 .01 \\ 0.01 \\ 0.01 \\ \hline 0.01 \end{array}$	$\begin{array}{r}£ 4.05 \\ -£ 1.255 \\ \hline\end{array}$
		£0.80		$\begin{array}{llllll} \hline 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & & \end{array}$		£1.25		0.10 .1	$0.010 .010 .01$ $0.010 .01$	
		\downarrow								
		£1.30		$\begin{array}{\|lllllllllllllll} \hline 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & & & \\ \hline \end{array}$				$\begin{array}{lllllll} 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \end{array}$	0.010 .010 .01 $0.01 \quad 0.01$	£ $\begin{aligned} & 3 \\ & 4\end{aligned} .^{10} 5$
		£0.80		$\begin{array}{\|l\|lllll} \hline 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.1 & \\ \hline \end{array}$				0.10 .1	0.010 .010 .01 0.010 .01	
		Pupils will use resources they are familiar with, such as place value counters, to secure their understanding of the process before moving into the formal written method. Their mastery is then challenged through word problems, involving money and measures.						\downarrow 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.010 .010 .01 0.010 .01	
								0.10 .1	$\begin{array}{\|l\|} \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	$\begin{aligned} & \hline 2.8 \mathrm{o} \\ & \hline \end{aligned}$

Multiplication

Year	Learning Ladder Target	Calculation Strategies		
KS1	I can multiply using concrete objects, pictorial representations, arrays and repeated addition.	Count in threes.	How many fish are there in all? There are 12 fish in all.	3 groups of 4 $3 \times 4=12$
Three	I can partition a number into 10 's and 1's to multiply (distributive law). Leading to: I can multiply 2 and 3 digit numbers by a 1 digit number using the expanded column method. Building on their concrete understanding of multiplication, and growing confidence with mental recall of times table facts, the focus now moves to more formal written methods. Resources such as dienes may be used to help secure or show their understanding. Those confident with the method will have their mastery challenged through word problems.		In Focus There are 23 children in a class. How many children are there in 2 classes? Let's Learn Step 1 Multiply the ones by 2. $3 \text { ones } \times 2=6 \text { ones }$ Step 2 Multiply the tens by 2. $2 \text { tens } \times 2=4 \text { tens }$ Step 3 Add the products. $6+40=46$ $23 \times 2=46$ There are 46 children in the 2 classes.	$\mathbf{t} \quad 0$ $2 \quad 3$ $\times \quad 2$$\mathbf{t} \quad 0$ $2 \quad 3$ $\times \quad 2$ 40$t \quad 0$ $2 \quad 3$ $\times \quad 2$ 40 46

Six	I can use long multiplication to multiply THTO x TO.		$\begin{aligned} & 1320 \times 31=40920 \\ & 1320 \\ & \times \quad 3 \\ & \times 13 \end{aligned}$ $\begin{array}{r} 1320 \\ \times \quad 31 \\ \hline 39600 \\ +\quad 1320 \longrightarrow 1320 \times 30 \\ \hline 40920 \\ \hline \end{array}$	$\begin{aligned} 1320 \times 1 & =1320 \\ 1320 \times 10 & =13200 \\ 1320 \times 30 & =39600 \end{aligned}$ $1300 \times 30=39000$

Division

Year	Learning Ladder Target	Calculation Strategies	
KS1	I can divide using concrete objects, pictorial representations and arrays and repeated subtraction.		In introducing division, the focus is on ensuring a concrete understanding of division as requiring an amount to be divided into equal groups. In the early stages, all pupils will be asked to show their using resources and pictures rather than through a written method. The questions will involve simple numbers from times tables they are comfortable with.

Four	I can divide 3 digit numbers using formal written methods.	Method $2 \quad 3$ hundreds $\div 3$ $3 \begin{array}{r}1 \\ \hline 3\end{array} \begin{array}{r}3 \\ -\quad 3 \\ -\end{array}$ Each person paid $£ 107$.	Building on their confidence in the methods established in Year Three, pupils' mastery of the method is developed and challenged through increasingly larger numbers. For those working at greater depth, they may be challenged through the introduction of remainders, and through problem solving activities.
Five	I can divide 3 digit and 4 digit numbers by 1 digit using formal written methods.	$\begin{gathered} 1262 \\ 5048 \div 4=\begin{array}{lllll} 1 & 2 & 6 & 2 \\ \hline \end{array} \\ \hline \end{gathered}$	Building on their confidence in the methods established in Year Four, pupils' mastery of the method is developed and challenged through increasingly larger numbers. For those working at greater depth, they may be challenged through the introduction of remainders, and through problem solving activities.

Five/ SIx	I can divide numbers up to 4 digits by a 1 digit whole number using short division

(1)
$376 \div 5=75$ remainder 1

using short division

Short division will be introduced in Year Five and Six, once pupils have mastered the long division method.
They may be supported through the use of place value counters to show the process. It is crucial to their understanding that they can explain the process at every stage of the calculation, rather than simply being able to carry out a process to achieve an answer.

$376 \div 5=75$ remainder 1
should we do with the remainder 1 ?

I can divide numbers up to 4 digits by a 2 digit whole number using long division.

1. found the value of $858 \div 78$ in three different ways.

$$
858 \div 78=11
$$

As pupils reach the end of Year Six, pupils will be required to demonstrate a range of methods for division as part of the arithmetic test, as well as through problem solving. This may also involve division by two digits numbers using the methods shown above

