

80% of accidents are due to human error! (Bobbi Wells, 2025)

"To fast-forward to the <u>safest possible operational</u> <u>state</u> for vertical takeoff and landing vehicles, network operators will be interested in the path that realizes <u>full autonomy as quickly as possible</u>." (Uber, 2016)

Human error has been implicated in up to 80% of accidents in civil and military aviation!

(Weigmann & Shappell, 2003)

 Human error has been implicated in up to 80% of accidents in civil and military aviation¹

- Human error has been implicated in up to 80% of accidents in civil and military aviation¹
- Pilots intervene to manage aircraft malfunctions on 20% of normal flights²

- Human error has been implicated in up to 80% of accidents in civil and military aviation¹
- Pilots intervene to manage aircraft malfunctions on 20% of normal flights²
- World-wide jet data from 2007-2016³
 - 244 million departures
 - 388 accidents

Outcome							
_		Not Accident	Accident				
ed to ervention	No	80%	20%	?			
Attributed to Human Intervention	Yes	20%	80%	?			
Ŧ		243,999,612	388	244,000,000			

(1) Weigmann & Shappell, 2003; (2) PARC/CAST, 2013; (3) Boeing, 2017

- Human error has been implicated in up to 80% of accidents in civil and military aviation¹
- Pilots intervene to manage aircraft malfunctions on 20% of normal flights²
- World-wide jet data from 2007-2016³
 - 244 million departures
 - 388 accidents

		Outo	come	
_		Not Accident	Accident	
Attributed to Human Intervention	No	195,199,690	78	195,199,768
Attribut man Inte	Yes	48,799,922	310	48,800,232
로		243,999,612	388	244,000,000

(1) Weigmann & Shappell, 2003; (2) PARC/CAST, 2013; (3) Boeing, 2017

Pilots Produce Safety Far More Often than They Reduce It

- Human error has been implicated in up to 80% of accidents in civil and military aviation¹
- Pilots intervene to manage aircraft malfunctions on 20% of normal flights²
- World-wide jet data from 2007-2016³
 - 244 million departures
 - 388 accidents

Learn more: Holbrook, J. (2021). Exploring methods to collect and analyze data on human contributions to aviation safety. In Proceedings of the 2021 International Symposium on Aviation Psychology. https://aviation-psychology.org/wp-

content/uploads/2021/05/ISAP 2021 Proceedings FINAL.pdf

(1) Weigmann & Shappell, 2003; (2) PARC/CAST, 2013; (3) Boeing, 2017

Pilots *Produce* Safety Far More Often than They *Reduce* It

Human 6 up to 8 militar	48,799,922 = 157,419	Frequently Studied
Pilots	310	195,199,768
malfur ons o	Pilots intervene to keep flights	
flights	safe from aircraft malfunctions	48,800,232
World	~157,000 times for every time that	
244 n 388 a	human error contributes to an	244,000,000
	accident!	-

 Human error has been implicated in 70% to 80% of accidents in civil and military aviation (Weigmann & Shappell, 2003)

 Human error has been implicated in 70% to 80% of accidents in civil and military aviation (Weigmann & Shappell, 2003)

Actually, 100% of accidents are due to human limitations!

 Human error has been implicated in 70% to 80% of accidents in civil and military aviation (Weigmann & Shappell, 2003)

Actually, 100% of accidents are due to human limitations!

And 100% of successful operations are due to human capabilities!

 Human error has been implicated in 70% to 80% of accidents in civil and military aviation (Weigmann & Shappell, 2003)

Actually, 100% of accidents are due to human limitations!

And 100% of successful operations are due to human capabilities!

 Pilots intervene to manage aircraft malfunctions on 20% of normal flights (PARC/CAST, 2013)

 Human error has been implicated in 70% to 80% of accidents in civil and military aviation (Weigmann & Shappell, 2003)

Actually, 100% of accidents are due to human limitations! And 100% of successful operations are due to human capabilities!

 Pilots intervene to manage aircraft malfunctions on 20% of normal flights (PARC/CAST, 2013)

Pilots intervene in various ways on 100% of flights!

$\frac{48,799,922}{2100} = 157,419$
310
Pilots intervene to keep flights
safe from aircraft malfunctions
~157,000 times for every time that
human error contributes to an
accident!

This is a *conservative* estimate!

 $\frac{\frac{\text{(All non-accidents)}}{243,999,612}}{\frac{388}{\text{(All accidents)}}} = 628,865$

Human capabilities keep flights safe more than **628,865** times for every time that a human limitation contributes to an accident!

This is a conservative estimate!

This estimate is more indicative of operational realities!

Consequences of Focusing on Human Error

Designs intended to "protect" the system from "error-prone" humans can design out the capability for humans to effectively intervene/adapt, which is a far more common behavior than error.

Consequences of Focusing on Human Error

Designs intended to "protect" the system from "error-prone" humans can design out the capability for humans to effectively intervene/adapt, which is a far more common behavior than error.

- Automation levels are only increasing
 - Until automation designers acknowledge and consider that operators can intervene to cause safety, every increase in automation adds to the risk of
 - Isolating the operator from the system
 - Limiting the operator's adaptive capacity and capability

Absence of evidence \neq evidence of absence

A Debatable Claim: "To fast-forward to the <u>safest</u> possible operational state for vertical takeoff and landing vehicles, network operators will be interested in the path that realizes <u>full autonomy as quickly as possible</u>." (Uber, 2016)

- When we characterize safety only in terms of errors and failures, we ignore the vast majority of human impacts on the system.
- When policy and design decisions are based only on failure data, they are based on a non-representative sample.

Food for Thought

Suppose we want to understand chocolate chip cookies, because they are desirable, and we want to have more.

Food for Thought

Suppose we want to understand chocolate chip cookies, because they are desirable, and we want to have more.

Food for Thought

Suppose we want to understand chocolate chip cookies, because they are desirable, and we want to have more.

An operational example

Suppose we want to understand *safety*, because it is desirable, and we want to have more.

- Human error has been implicated in up to 80% of accidents in civil and military aviation (Weigmann & Shappell, 2003).
- Pilots intervene to manage aircraft malfunctions on 20% of normal flights (PARC/CAST, 2013).
- World-wide jet data from 2007-2016 (Boeing, 2017)
- 244 million departures
- 388 accidents

Learn more: Holbrook, J. (2021). Exploring methods to collect and analyze data on human contributions to aviation safety. In *Proceedings of the 2021 International Symposium on Aviation Psychology*. https://aviation-psychology.org/wp-content/uploads/2021/05/ISAP 2021 Proceedings FINAL.pdf

Learning from All Operations: Resources

Publications

https://flightsafety.org/toolkits-resources/learning-from-all-operations/

https://nescacademy.nasa.gov/video/15d835918c84470bbf3177d0c4db65961d

Our thinking affects our policies and designs

- When policy and design decisions are based only on failure data, they are based on a very small sample of nonrepresentative data.
- Without understanding the mechanisms by which people produce safety, any estimate or claim about the predicted safety of autonomous machines is inherently suspect.
- Removing the human demonstrated reliable source of safety-producing behavior without first understanding the capability being removed introduces unknown risks.

