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Cardiogenic shock, Hemorrhagic shock

Vascular leakage has emerged as a major factor during circulatory failure. Triggered by the inflammatory process fol-
lowing the recognition of both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs), it worsens circulatory failure through the hypovolemia it induces. It may also crucially participate

in secondary microcirculation disorders and organ dysfunctions, due to interstitial edema resulting from extravas-
cular fluid accumulation. Accordingly, fluid balance, i.e,, the difference between fluid intake and output, is directly
related with outcomes during the different types of shock. Moreover, controlling vascular leakage had beneficial
effects in various animal models of circulatory failure. However, despite promising preclinical findings, no routine drug
is currently available to control vascular leakage in humans. This review depicts the mechanisms involved in the main-
tenance of a quiescent endothelium and those implicated in the destabilization of its barrier function in various
forms of shocks. It further describes available tools to explore vascular leakage and the most advanced treatments
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Introduction: vascular leakage, a key player

during circulatory failure

The endothelium, which covers a surface area of more
than 1000 m? in the human body, has a key role in regu-
lating leucocyte trafficking and tissue homeostasis [1].
While a localized increase in permeability is essential for
the healing process following tissue injury, the systemic
spread of hyperpermeability may become highly del-
eterious. This "vascular leakage” (or "capillary leakage”)
is induced by systemic inflammation associated with
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circulatory shock and represents an important feature of
circulatory failure. Vascular leakage worsens circulatory
failure by inducing hypovolemia and may promote organ
dysfunction through the interstitial edema it induces
[2—-4]. Various experimental studies demonstrated that
even small increases in the water content of organs may
crucially affect their function [5]. Vascular leakage also
decreases hydrostatic and osmotic pressures in small
vessels compared to the adjacent interstitium, which is
thought to induce their occlusion and contribute to the
microcirculation disorders observed during shock states
[6]. Although it has been initially described during sepsis,
inflammation-induced vascular leakage is also a hallmark
of “sterile” forms of shock, e.g., cardiogenic shock [7, 8],
post-resuscitation syndrome [9, 10], and resuscitation
from hemorrhagic shock [11]. Accordingly, fluid balance
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is an independent predictor of mortality during septic or
cardiogenic shock [8, 12—14]. In turn, controlling capil-
lary leakage was beneficial during experimental circula-
tory failure [15-17]. However, the pathophysiology of
vascular leakage remains poorly described in humans,
and no routine therapeutic is currently available to con-
trol it [4].

Many techniques have been developed to quantify the
degree of leakage in animal models. The organ total/dry
weight ratio (before and after dehydration) allows for a
rough assessment of fluid accumulation over time [18].
Other authors utilized the extravasation of various dyes
injected intravenously, quantifying the leakage through
histology or measuring their elution from organs. These
dyes enable a more precise quantification of the degree
of leakage within shorter time windows, the most com-
monly used ones being Evans blue [19], fluorescent dex-
trans, and microspheres [20] (Fig. 1).

Only limited tools are available in humans. Transpul-
monary thermodilution is a routinely available method.
Still, it only explores the leakage from the perfused
pulmonary vascular bed based on the extravascular
lung water content and the pulmonary vascular per-
meability index [21-23]. Other methods of interest
use indocyanine green, which rapidly binds to circu-
lating proteins when injected intravenously. However,
as multiple factors affect its clearance (e.g., vascular
permeability, cardiac output, and liver function), its
plasma concentration can only reliably estimate plasma
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volume [24-26]. Indexing plasma volume evaluated by
indocyanine green on the initial distribution volume of
glucose (after a simultaneous injection of glucose, dis-
tributing rapidly in the extracellular space), may allow
to more specifically address vascular permeability to
proteins [24, 25]. However, this technique remains
technically demanding and requires further validation.
Bioelectrical impedance, which measures the water
content between two electrodes, also yielded promis-
ing preliminary results [26]. Nevertheless, fluid bal-
ance remains the predominant marker of leakage in the
clinical setting, although it is influenced by several con-
founding factors, e.g., local fluid loading policies, the
individual patient’s proteinemia, vasoplegia, and renal
function [10, 14-16].

Pathophysiology of vascular leakage during sepsis
Endothelial cell quiescence and barrier function

The barrier function of the quiescent endothelium
allows a tight regulation of tissue homeostasis. Main-
tenance of the endothelium in a quiescent state is an
active process involving a combination of many sign-
aling pathways (Fig. 2) [27]. Laterally, endothelial
cells (EC) interact strongly with adjacent EC via inter-
endothelial junctions [28], which regulate endothe-
lium integrity and paracellular trafficking of fluids and
inflammatory cells [29, 30]. Three types of junctions are
involved in EC-EC adhesion:

B

Fig. 1 A Representative heart cross sections from mice injected i.v. with fluorescent 70-kDa dextran (green) at the time of resuscitation (Low-Flow
=0 min) and harvested at Low-Flow min 4, in a model of resuscitated cardiac arrest, showing a massive extravasation of the dye. B sham animals
(without cardiac arrest) in the same model. Vessels were counter-stained with fluorescent isolectin (red). Scale bar =25 um
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Fig. 2 Schematic representation of mechanisms implicated in endothelial barrier function and vascular hyperpermeability during circulatory failure

— Gap junctions, which rely on proteins from the con-
nexin family, serve as key regulators of small mole-
cules trafficking across the endothelium [31].

— Tight junctions are transmembrane proteins that
interact with adjacent endothelial cells [32]. They are
composed of members of claudin, occludin, junction-
associated molecule (ESAM) and junctional adhesion
molecules (JAMs), which bind to actin cytoskeleton
through zona occludens 1 protein (ZO-1), cingulin,
and paracingulin.

— Adherens junctions involve homophilic interactions
of vascular endothelial (VE)-cadherin [33, 34].

VE-cadherin is a crucial regulator of paracellular per-
meability to fluids, which allows the trafficking of small
molecules (< 3.6 um, <40 kDa) at basal state. Accord-
ingly, an anti-VE-cadherin antibody induced major vas-
cular leakage in mice in vivo [35].

Signals from the basement membrane also contribute
to the maintenance of the quiescent state. In particular,
interactions between integrins and extracellular matrix
components activate downstream intracellular pathways

responsible for stabilizing the endothelial barrier, such
as the PI;K/AKT pathway [36]. Matrikines (i.e., growth
factors embedded in the extracellular matrix) and matri-
cellular proteins also contribute to signaling through a
quiescent state. Co-stimulation of vascular endothelial
growth factor-A (VEGF-A) and fibroblast growth fac-
tors (FGF), particularly, is a strong signal for survival and
maintenance of a quiescent phenotype through ERK1/2
signaling [27, 37].

The glycocalyx has also been referred to assume a sig-
nificant role for maintaining endothelial barrier integ-
rity. Composed of a complex network of glycoproteins
and membrane-bound proteoglycans, it acts as a protec-
tive “jelly-like” layer coating the surface of vascular EC
(Fig. 2). Maintaining proteins at the center of the vessel,
it creates an osmotic gradient preventing water from
leaking through the endothelial barrier. In addition, the
glycocalyx also has essential signaling functions, particu-
larly concerning flow sensing and its downstream mech-
ano-transduction [38]. Glycocalyx components such as
Syndecan-4 associating with B1 integrin [36], function as
receptors for fibroblast growth factors (FGFs), vascular
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endothelial growth factors (VEGFs), and platelet-derived
growth factors (PDGFs) [39], to enhance EC barrier
function.

Finally, shear stress is an important signal that pro-
motes vascular integrity and the quiescence of EC [40].
The expression of the Kriippel-like family of transcription
factors KLF2/4 is induced by laminar shear stress and
maintains a quiescent endothelium by downregulating
inflammation and inhibiting the pro-coagulant activity
of EC. This consists in decreasing the expression of the
surface tissue factor and PAI-1, and increasing throm-
bomodulin expression [37, 41]. Platelet endothelial cell
adhesion molecule-1 (PECAM-1), VE-cadherin, and
VEGF receptor-2 (VEGFR2) also form an essential mech-
anosensory complex mediating endothelial cell response
to shear stress [27, 42, 43]. Circulating factors are also
involved in maintaining a quiescent phenotype. In par-
ticular, Angiopoietin-1, secreted by adjacent mural cells,
signals through its endothelial receptor Tie2 and acti-
vates the PI;K/AKT pathway [44].

Microvascular endothelial activation and sepsis-induced
capillary leak

In acute inflammation, both pathogen-associated molec-
ular patterns (PAMPs) and damage-associated molecu-
lar patterns (DAMPs) activate multiple redundant and
pleiotropic pathways in microvascular endothelial cells
[6]. This initiates a shift from a homeostatic phenotype
characterized by hyperselective and regulated perme-
ability to an activated phenotype characterized by hyper-
permeability [45, 46]. Several mechanisms contribute to
inflammation-induced permeability: destabilization of
adherens and tight junctions, glycocalyx breakdown, oxi-
dative stress, and cell death (Fig. 2).

The integrity of adherens junctions is modulated by
tyrosine phosphorylation of its components, particularly
VE-cadherin [47]. VE-cadherin is phosphorylated by
stimuli inducing vascular leakage, mostly depending on
Src and RhoA kinase activity, leading to its endocytosis
and adherens junction destabilization. Phosphorylated
RhoA and Rock also cause the formation of actin stress
fibers, generating forces at the lateral cellular wall, which,
in turn, widens the intercellular space and participates in
junction disassembly and increased permeability [30, 48].

Consequently, various mediators such as Toll-Like
Receptor (TLR) agonists, interleukin-6 (IL-6), throm-
bin, or VEGF may increase VE-cadherin phosphoryla-
tion, leading to its endocytosis in clathrin-coated vesicles
[49]. For example, VEGF initiates a signaling cascade
involving Src kinase, Vav2, and Rac, which triggers the
serine phosphorylation of VE-cadherin. This results
in the recruitment of B-arrestin2 and culminates in the
endocytosis of VE-cadherin [50]. Inhibiting this VEGF
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signaling pathway is one of the mechanisms by which
the vascular protective agent angiopoietin-1 (Angl) pre-
vents VE-cadherin internalization and vascular leakage
[51]. Additionally, cytokine-induced phosphorylation of
the VE-cadherin cytoplasmic domain has been reported
to trigger the cleavage of its extracellular domain [52],
producing a soluble form detectable in the plasma as
a biomarker of endothelial activation/dysfunction [53,
54]. Recently, Yang et al. have demonstrated that, dur-
ing sepsis, circulating lactate activates the calpainl/2 in
an ERK-dependent pathway, provoking the VE-cadherin
proteolytic cleavage and its endocytosis in EC. This study
also demonstrated that both genetically or pharmacologi-
cally inhibiting lactate signaling alleviated sepsis-asso-
ciated capillary leak and improved outcomes in murine
polymicrobial sepsis, suggesting a direct role of lactate
in promoting endothelial permeability [55]. Similar to
adherens junctions, several studies have reported the
disruption of endothelial tight junctions in sepsis, reduc-
ing the protein levels of occludin and zonula occludens:
for instance, tumor necrosis factor-alpha (TNF-«a) was
shown to disrupt claudin-5 at endothelial cell-cell junc-
tions through NF-kB pathway activation [56].

In addition to cell-cell junctions, glycocalyx degrada-
tion can promote microvascular permeability and a local
increase in oxidative stress [57]. Human studies provided
evidence that sepsis and other acute inflammatory ill-
nesses are associated with shedding of the glycocalyx,
as measured by syndecan-1, hyaluronan, or glycosami-
noglycans [58-61]. Their circulating levels are related
to capillary leakage and poor outcome [62-65]. In a
lipopolysaccharide (LPS) model of endotoxemia in mice,
Kataoka et al. demonstrated that glycocalyx destruction
increased microvascular macromolecule permeability
and leukocyte adhesion [66]. Moreover, the intact gly-
cocalyx serves as a sanctuary for two major antioxidant
enzymes: superoxide dismutase (SOD) [67] and activated
xanthine oxidase [68]. Therefore, glycocalyx degradation
may cause a shift towards a pro-oxidant state. In turn,
reactive oxygen species (ROS) can amplify glycocalyx
degradation via proteolytic cleavage of syndecan-1 and
sulfated glycosaminoglycan, ultimately further aggravat-
ing endothelial permeability [69, 70].

Finally, redox imbalance can induce EC death through
apoptosis or necrosis. ROS (e.g., H,0,, OH"") and reac-
tive nitrogen species (e.g, ONOQO") trigger cell death
programs both via the mitochondrial and extrinsic (death
receptor and endoplasmic reticulum) pathways [71, 72].
The degree of redox imbalance determines whether
EC undergo apoptosis or necroptosis, both of which
can significantly enhance endothelial dysfunction [73].
Endothelial cell death involves the loss of structural and
membrane properties, thus exacerbating permeability,
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capillary protein and fluid leakage, and, consequently,
organ injury. In a model of peritonitis in mice, Gill et al.
identified apoptotic microvascular endothelial cells in the
lung and reported that pretreatment with a pan-caspase
inhibitor attenuated capillary leakage [74]. This sug-
gests that endothelial cell apoptosis may also mediate
lung vascular hyperpermeability. Finally, necrotic cells
release large amounts of DAMPs and phosphatidylserine
(PS)-positive microparticles, amplifying local inflamma-
tion and enhancing capillary leakage [75]. Beyond apop-
tosis and necrosis, other forms of endothelial cell death
have been shown to be involved in sepsis. “Pyroptosis”
is a programmed form of necrosis activated by intracel-
lular sensors of microbial products, which, in turn, trig-
ger the formation of an intracellular complex known as
the “inflammasome” This process amplifies the release
of pro-inflammatory cytokines and causes damage to the
endothelium. Caspase-1, a key effector of pyroptosis, has
been shown to contribute to sepsis lethality [76]. More
recently, PANoptosis has been described as a form of cell
death that integrates features of pyroptosis, apoptosis,
and necroptosis, with emerging evidence supporting its
role in sepsis [77, 78]. However, the relative contribution
of these forms of cell death to vascular leakage remains to
be determined.

It could be argued that controlling vascular leakage
may impair the immune response to pathogens dur-
ing sepsis. However, numerous studies using intravital
microscopy as well as cell and molecular biology have
challenged the notion that vascular leakage is necessary
for leukocyte trafficking through the endothelial barrier.
In fact, an adequate and competent immune response
involves tight regulation of leukocyte trafficking, which
relies on a controlled “unzipping” of endothelial cell—cell
junctions [79, 80]. Accordingly, several agents have been
shown to reduce vascular leakage in animal models of
sepsis without impairing leukocyte recruitment or path-
ogen clearance [79]. This “uncoupling” of fluid and leu-
kocyte extravasation further reinforces the rationale for
controlling trans-endothelial leakage during sepsis.

Vascular leakage in other forms of circulatory
failure

Post-resuscitation syndrome

Vascular leakage is also a hallmark of the post-resusci-
tation syndrome [81], which shares many pathophysi-
ological features with sepsis [9]. Ischemia—reperfusion
(I/R) injury after cardiac arrest triggers an intense
inflammatory reaction, with levels of circulating
cytokines comparable with sepsis [82, 83], and high
amounts of fluids needed to correct hypovolemia [9,
10, 84]. The resulting interstitial edema is thought to
assume significant importance for organ function: an
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only 4% increase in myocardial water content was suf-
ficient to reduce cardiac function by more than 50% in
animals [5, 85]. Myocardial edema, which occurs within
minutes, might, therefore, contribute to the transient
myocardial dysfunction observed after cardiac arrest
[84]. Likewise, both in animal and human studies, post-
cardiac arrest neurological deficit was directly related
to cerebral edema [86, 87]. Targeting vascular leakage,
hence, is a promising therapeutic approach after car-
diac arrest.

During ischemia, the inflammatory process is induced
by the release of DAMPS, mainly consisting of damaged
cell debris released after necrosis (membrane, DNA, his-
tone fragments...) [88]. DAMPs are recognized as dan-
ger signals by Pattern-Recognition Receptors (PRRs)
expressed by resident inflammatory cells (macrophages
and mastocytes), initiating an inflammatory response
[89] and activating EC by producing pro-inflammatory
cytokines [89-91]. Among these DAMPs, High-Mobility
Group Box 1 (HMGB1) and S100 A8/A9 are pivotal dur-
ing ischemia [92, 93], by activating the nuclear transcrip-
tion factor NF-kB that signals through toll-like receptors
2 and 4 (TLR2/4) and receptors for advanced glyca-
tion end-products (RAGE), expressed by inflammatory
cells. EC activation is responsible for the recruitment of
inflammatory cells, which further enhances the inflam-
matory response to ischemia through ROS generation
[89, 94]. The resulting inflammation strongly impairs the
stability of inter-endothelial cell junctions. Upon acti-
vation, EC release the contents of Weibel-Palade bod-
ies into the circulation, which contain a wide range of
molecules responsible for endothelium activation and
destabilization. Among those, Angiopoietin-2 is a potent
inducer of vascular permeability as a competitor agonist
of Angiopoietin-1 on the Tie-2 receptor [95]. Von Wille-
brand Factor, in combination with the release of tissue
factor (TF) and plasminogen activator inhibitor-1 (PAI-1)
by activated EC, induces a procoagulant endothelial state
[43, 91] and thrombin generation, which contributes to
vascular leakage from ischemic vessels [30]. ROS, along
with many substances released by inflammatory cells
(histamine, bradykinin, nitric oxide, leukotrienes, throm-
boxanes and prostaglandins), further increase vascular
hyperpermeability [30, 48, 96, 97]. Finally, as for sepsis,
the glycocalyx undergoes significant degradations during
ischemia, contributing to capillary leakage [98].

In conclusion, while vascular leakage exhibits com-
mon pathophysiological features both during sepsis and
the post-resuscitation syndrome, the precise common
mechanisms, however, and any differences remain to
be better described. Likewise, the contribution of tissue
ischemia to sepsis-induced vascular leakage must be bet-
ter characterized.
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Cardiogenic shock

Severe cardiogenic shock is also responsible for ischemia-
induced tissue lesions, thus triggering systemic hyper-
inflammation. This leads to the induction of a complex
hemodynamic profile, combining features of both low
cardiac output and inflammation-induced vasoplegia,
and vascular leakage [99], the degree of which is directly
related to patient severity [8]. Accordingly, the angio-1/2
ratio correlates with mortality [7]. Nevertheless, control-
ling vascular leakage during cardiogenic shock remains
an unresolved issue.

Hemorrhagic shock
Similar to sepsis, trauma and hemorrhage lead to sys-
temic hyper-inflammation triggered by direct tissue dam-
age per se [100, 101] and shock-induced tissue hypoxia
[102]. Therefore, “repayment of the O, debt” [103] to
restore/maintain tissue O, supply is a cornerstone of the
management. However, in analogy to the post-resuscita-
tion syndrome, restoring tissue perfusion induces an I/R-
type of injury [104]. The type and amount of aggressive
fluid resuscitation [105, 106] and catecholamine infu-
sion [107] to achieve adequate perfusion, may further
aggravate this effect. Hence, diffuse capillary leakage was
already described in the context of trauma-and-hem-
orrhage in the 1970s. However, despite progress in the
understanding of its pathophysiology, its precise mecha-
nisms remain unclear [108], and, in particular, practical
measures for its prevention and/or treatment are still
lacking. The local trauma-induced release of cytokines,
complement, arachidonic acid derivatives, and ROS
primarily induces repair processes. However, an over-
whelming injury may cause systemic spillover of these
mediators, thereby initiating the above-mentioned sys-
temic hyper-inflammation. In addition, whereas a single,
moderate, and/or localized trauma does not per se cause
this systemic response, any additional, even delayed, sec-
ond stress may do so [109]. This is referred to as the"two-
hit"theory [109, 110], emphasizing the role of impaired
handling of a second stress, e.g., follow-up surgery, sec-
ondary infection, and/or transfusion of blood products.
Evidence of trauma-related vascular leakage has been
reported for virtually all organs, i.e., the lung [111-117],
the gut as documented by translocation of endotoxin
and/or live bacteria [116, 118—122], the heart [123, 124],
the liver [115, 125], the kidney [114, 115, 126, 127] and
the brain [128]. Not only does trauma aggravate vas-
cular barrier dysfunction resulting from hemorrhagic
shock [129], but also conversely hemorrhage aggravates
any trauma-related barrier destabilization [115, 116]. In
this context, hemorrhage increased syndecan-1 levels
beyond those induced by trauma alone, suggesting that
the endothelial glycocalyx may assume importance for
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hemorrhage-related vascular leakage. In fact, exogenous
albumin attenuated albumin leakage into the extravascu-
lar space, indicating the role of the endothelial glycocalyx
for intravascular maintenance of plasma proteins [130].

In experimental trauma-and-hemorrhage and subse-
quent (fluid) resuscitation, various therapeutic strategies
have been tested to reduce microvascular leakage (for
a systematic review see [131]): these approaches com-
prise modulation of energy metabolism (e.g. hypother-
mia [126, 132]), targeting inflammatory pathways (e.g.,
via complement blockade [133] or vagus nerve stimula-
tion [134]), the angiopoietin/Tie-2 system (e.g., vascu-
lotide [135]), administration of sex hormones [136, 137]
or sphingosine [138], the use of hyperoxia (i.e., increased
inspired O, fractions [126, 127]), vasopressin [139] or its
analogues [140] rather than catecholamines to counteract
hypotension, and targeted choice of intravascular fluid
resuscitation (e.g., the use of blood products [141] and/or
synthetic colloids rather than crystalloids [142], or hyper-
tonic saline [143]; for detailed review see [144, 145]).

Clearly, the existing data remains equivocal, and it
remains an open question whether any promising experi-
mental finding can be confirmed in clinically relevant
resuscitated models of trauma and hemorrhage. So far,
however, none of these therapeutic strategies has found
its way into clinical practice.

More advanced therapeutic strategies

under investigation to control vascular leakage
during circulatory failure

A wide range of potential treatments to prevent or reduce
vascular leakage during the various forms of circulatory
failure have been or are currently being investigated in
pre-clinical studies [146]. Some are more advanced and
have translated to clinical investigations.

Vasopressors and endothelial permeability

Vasopressors are pivotal during the early management of
shock to restore mean arterial pressure and sustain organ
perfusion. Nevertheless, their microvascular effects have
often been overlooked, particularly regarding endothe-
lial permeability. In an era marked by increasing inter-
est in non-catecholaminergic agents like vasopressin or
angiotensin-II, the examination of microvascular effects
of both catecholaminergic and non-catecholaminergic
agents becomes imperative.

In ex vivo experiments utilizing human lung microvas-
cular endothelial cells (L-HMVEC), Joftre et al. reported
that epinephrine and norepinephrine significantly reduce
Toll-Like Receptor (TLR) agonist and proinflamma-
tory cytokine-induced endothelial permeability [147].
This effect was demonstrated to be mediated through
both £31 and f{32-adrenergic receptors. Mechanistically,
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32-adrenergic receptor activation reduces LPS-induced
permeability through cytoskeletal rearrangement, con-
tributing to the maintenance of impermeability under
inflammatory conditions [148, 149]. Clinical trials also
support these experimental findings; in the BALTI-1
study on ARDS patients, the salbutamol group exhibited
significantly lower lung water at day 7 compared to the
control group [150], suggesting that f3-adrenergic stimu-
lation may attenuate capillary leakage. This effect, how-
ever, did not translate into increased survival in the larger
confirmatory randomized trial BALTI-2 [151]. The CEN-
SER study on septic shock patients receiving early nor-
epinephrine indicated a lower occurrence of pulmonary
edema (14% vs. 28%; p= 0.004) despite similar fluid vol-
umes, suggesting that early catecholamine administration
may limit sepsis-induced capillary leak syndrome [152].

Regarding vasopressin, in vivo experiments of pneu-
monia-induced sepsis in sheep demonstrated that the
V2-receptor antagonist tolvaptan significantly attenuated
fluid retention and reduced lung water content [153].
However, in rats undergoing hemorrhagic shock, vaso-
pressin worsened pulmonary and renal capillary leakage
[139]. Vasopressin receptor blockade reversed blood-
brain barrier hyperpermeability during experimental
autoimmune encephalomyelitis in rats, suggesting that
vasopressin might be deleterious to blood—brain barrier
permeability [154]. Therefore, arginine vasopressin could
potentially exacerbate capillary leak.

Data regarding angiotensin-2 are limited. Ex vivo stud-
ies using transcriptomics reported that angiotensin-2
induced a concentration and time-dependent increase
in VEGF mRNA expression by human vascular smooth
muscle cells [155]. In human umbilical vein endothelial
cells (HUVEC), angiotensin II was reported to increase
permeability and plasmalemmal vesicle-1 (PV-1) expres-
sion, a protein associated with microvascular leakage
[156]. Similarly, under high glucose concentrations,
angiotensin II also aggravated LPS-induced permeabil-
ity in L-HMVEC [157]. Nevertheless, using experimental
transendothelial hydraulic permeability measurements,
Victortino et al. observed that while microvascular per-
meability is increased by angiotensin-2 under basal
conditions, it might be reduced in ATP-activated
endothelium [158]. Overall, data on microvascular func-
tion and capillary leak are crucially needed from clini-
cal trials exploring the effects of non-catecholaminergic
Vasopressors.

Adrecizumab

Adrenomedullin is a protein belonging to the calci-
tonin gene-related family that has dual vascular effects.
It reduces inflammation-induced endothelial hyper-
permeability and promotes smooth muscle cell-related
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vasorelaxation [159-162]. Adrecizumab, a humanized
monoclonal non-neutralizing anti-adrenomedullin anti-
body (clone HAMS8101), increased adrenomedullin bio-
availability in the plasma by preventing adrenomedullin
degradation and inhibiting its translation from the
plasma to the interstitium. Therefore, it was tested dur-
ing sepsis to attenuate both vascular leakage and vaso-
plegia [159]. It efficiently reduced vascular leakage and
improved survival in pre-clinical models of sepsis [163],
and, consequently, was evaluated in a phase 2a double-
blind randomized trial, the AdrenOSS-2 biomarker-
guided trial [159]. 301 septic shock patients with plasma
bio-adrenomedullin concentrations >70 pg/ml less than
12 h after vasopressors initiation were randomized to
receive a single dose of adrecizumab or its placebo. With
comparable adverse events between groups, the trial
demonstrated the safety and tolerability of the drug.
Although the trial was not designed for efficacy, patients
receiving adrecizumab exhibited a more pronounced
reduction in their SOFA score at day 7 and a comparable
sepsis-support index (days alive without hemodynamic,
respiratory or renal support) at day 30, while mortality at
day 28 did not differ between groups (24 vs. 28% in the
control group, p= 0.44). Further research is ongoing for
the development of this drug during sepsis [159].

Given the deleterious role of vascular hyperpermeabilty
and an association between circulating adrenomedullin
levels and patient outcomes during cardiogenic shock,
adrecizumab was also evaluated during this condition
[164]. In the ACCOST-HH trial, a double-blind mul-
ticenter randomized trial, it did not provide any advan-
tage on the primary endpoint of the number of days alive
without cardiovascular organ support at day 30, nor on
mortality (40 vs 40%, p= 0.98). Serious adverse events,
however, were comparable between groups, further sup-
porting the good tolerance of the drug [165].

FX06
FXO06 is a drug containing the fibrin-derived peptide
Bp15-42, which stabilizes VE-cadherin-dependent inter-
endothelial cell junctions [20, 166, 167]. It was first devel-
oped in murine myocardial I/R injury, reducing vascular
leakage and tissue damage [168]. In a phase II trial con-
ducted on 234 patients suffering from acute coronary
syndrome, patients treated with FX06 exhibited a 58%
decrease in their early necrotic core zone, although the
primary endpoint of total infarct size at day 5 remained
unaffected [169]. Importantly, adverse events were com-
parable between groups, indicating a high safety profile
for the drug.

FXO06 also reduced vascular leakage in several pre-clin-
ical models of circulatory failure. In a pig model of car-
diac arrest, i.v. FX06 decreased the need for fluid intake
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and improved the neurocognitive recovery of the animals
[17]. Moreover, it reduced circulating levels of cytokines
IL-1pB, IL-6, TNF-q, IL-10, and MCP-1 in a mouse model
of cecal-ligation-and-puncture-induced sepsis. It also
reduced extravasation of i.v. injected fluorospheres and
Evans blue in a mouse model of endotoxemia [20, 170].
Finally, during resuscitation from hemorrhagic shock in
swine, FX06 attenuated markers of organ damage, and
reduced circulating endotoxemia and inflammation [171,
172]. Nevertheless, FX06 yielded disappointing results
in a phase II double-blind randomized study evaluating
its efficacy during SARS-CoV-2-induced acute respira-
tory distress syndrome. In particular, it had no detectable
effect on pulmonary edema [173].

Research is, however, currently ongoing in the setting
of circulatory failure, particularly post-cardiac arrest
shock, which would allow an early administration when
compared to ARDS.

PCSK9 inhibitors

Proprotein Convertase Subtilisin/Kexin-9 (PCSK9) is
a serine protease implicated in the homeostasis of low-
density lipoprotein (LDL) receptors, key regulators of
the inflammasome complex. During sepsis, PCSK9 is
involved in its activation and the release of pro-inflam-
matory cytokines [174]. It has a more specific role on
endothelial cell dysfunction, promoting ROS generation
from the endothelium under inflammatory and abnormal
shear stress conditions [175]. In a phase 2, double-blind
randomized and controlled trial, the PCSK9 inhibitor
evolocumab significantly decreased the intubation rate
of patients with Sars-CoV-2-induced ARDS [176]. Stud-
ies are currently ongoing to characterize its role during
human sepsis.

Modulators of angiopoietin/tie-2 pathway

Tie-2, a tyrosine kinase receptor expressed by endothe-
lial cells, is a crucial regulator of endothelial permeabil-
ity. Its main agonist, Angiopoietin-1 (Ang-1), promotes
the vascular barrier function through cell-cell junction
stabilization and strengthening of actin cytoskeleton, via
activation of the Akt pathway [177]. In contrast, angi-
opoietin-2 (Ang-2), competing with Ang-1 for Tie-2 liga-
tion, acts as a strong destabilizing agent of the endothelial
barrier. Contained in Weibel-Palade bodies of endothe-
lial cells, it is released at very early stages of endothelial
cell activation [178]. Accordingly, Ang-2 levels directly
related to pro-inflammatory cytokines concentra-
tions during sepsis, and the Ang-1/2 ratio correlates
with disease severity and outcome [179-181]. Hence,
manipulating the angiopoietin/Tie-2 pathway thus also
represents an attractive strategy to control vascular leak-
age during sepsis. Several drugs have been evaluated
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so far. Vasculotide, a synthetic Tie-2 agonist, has been
shown to reduce cytokine response and, ultimately, dose-
dependently improve survival in a fluid-resuscitated
murine model of cecal ligation and puncture-induced
polymicrobial sepsis [182]. Recombinant Ang-1 reduced
vascular leakage and neutrophil infiltration in the lungs
in a similar murine model of polymicrobial, abdominal
sepsis [183]. Finally, an anti-Ang-2 antibody with Tie-2
agonist properties also demonstrated protective effects
on the vasculature and improved survival in three other
different murine models of sepsis [184]. A phase 2a study
is currently recruiting to evaluate the safety and tolerabil-
ity of the synthetic Tie-2 agonist AV-001 in humans with
pneumonia (NCT05123755).

Other strategies

Many other strategies aiming at correcting dysregulated
inflammation are currently investigated during the dif-
ferent forms of circulatory failure (mostly during sepsis),
which may indirectly help controlling vascular leakage
[146, 185]. Moreover, better understanding of patients
heterogeneity regarding inflammatory phenotypes may
help reappraising treatments that failed demonstrating
their efficacy in humans, despite encouraging results in
pre-clinical studies [186, 187].

Conclusion

Inflammation-induced vascular leakage is a major con-
tributor to organ dysfunction during circulatory failure
and is thought to crucially impact patients’ outcome.
Despite promising pre-clinical findings, none of the
tested drugs translated to routine clinical care. Vascu-
lar hyperpermeability during shock, thus, remains an
area of research to better characterize its mechanisms in
humans and consecutively develop new treatments. Bet-
ter characterization of the individual patient’s phenotype
associated with vascular leakage is also mandatory to fur-
ther evaluate these new treatments.
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