REVIEW Open Access

Vascular leakage during circulatory failure: physiopathology, impact and treatments

Jérémie Joffre^{1,2†}, Peter Radermacher^{3,29†}, Hatem Kallel⁴, Iris Marangon⁵, Alexandre Rutault⁵, Yaël Levy^{6,7,8}, Alexandre Gaudet^{9,10}, Benjamine Sarton^{11,12}, Louis Kreitmann^{13,14}, Lucillia Bezu^{15,16}, Meryl Vedrenne^{17,18}, Thomas Maldiney^{19,20}, Youenn Jouan^{21,22,23}, Sarah Benghanem^{24,25}, Laure Stiel^{26,27}, Stéphane Germain⁵, Nicolas Bréchot^{5,25,28*} and For the 'commission recherche translationnelle de la société de réanimation de langue française'

Abstract

Vascular leakage has emerged as a major factor during circulatory failure. Triggered by the inflammatory process following the recognition of both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), it worsens circulatory failure through the hypovolemia it induces. It may also crucially participate in secondary microcirculation disorders and organ dysfunctions, due to interstitial edema resulting from extravascular fluid accumulation. Accordingly, fluid balance, i.e., the difference between fluid intake and output, is directly related with outcomes during the different types of shock. Moreover, controlling vascular leakage had beneficial effects in various animal models of circulatory failure. However, despite promising preclinical findings, no routine drug is currently available to control vascular leakage in humans. This review depicts the mechanisms involved in the maintenance of a quiescent endothelium and those implicated in the destabilization of its barrier function in various forms of shocks. It further describes available tools to explore vascular leakage and the most advanced treatments under development.

Keywords Vascular leakage, Shock, Circulatory failure, Systemic inflammation, Review, Endothelium, Sepsis, Cardiogenic shock, Hemorrhagic shock

Introduction: vascular leakage, a key player during circulatory failure

The endothelium, which covers a surface area of more than 1000 m² in the human body, has a key role in regulating leucocyte trafficking and tissue homeostasis [1]. While a *localized* increase in permeability is essential for the healing process following tissue injury, the systemic spread of hyperpermeability may become highly deleterious. This "vascular leakage" (or "capillary leakage") is induced by systemic inflammation associated with

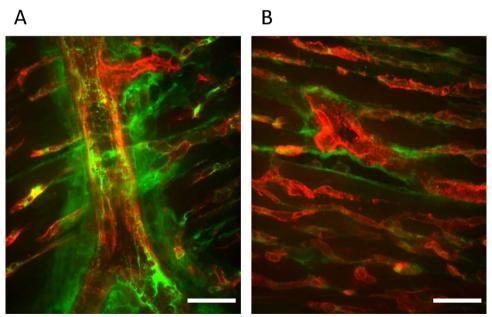
circulatory shock and represents an important feature of circulatory failure. Vascular leakage worsens circulatory failure by inducing hypovolemia and may promote organ dysfunction through the interstitial edema it induces [2–4]. Various experimental studies demonstrated that even small increases in the water content of organs may crucially affect their function [5]. Vascular leakage also decreases hydrostatic and osmotic pressures in small vessels compared to the adjacent interstitium, which is thought to induce their occlusion and contribute to the microcirculation disorders observed during shock states [6]. Although it has been initially described during sepsis, inflammation-induced vascular leakage is also a hallmark of "sterile" forms of shock, e.g., cardiogenic shock [7, 8], post-resuscitation syndrome [9, 10], and resuscitation from hemorrhagic shock [11]. Accordingly, fluid balance

*Correspondence: Nicolas Bréchot nicolas.brechot@aphp.fr Full list of author information is available at the end of the article

[†]Jérémie Joffre and Peter Radermacher have contributed equally to the work.

Joffre et al. Annals of Intensive Care (2025) 15:79 Page 2 of 13

is an independent predictor of mortality during septic or cardiogenic shock [8, 12–14]. In turn, controlling capillary leakage was beneficial during experimental circulatory failure [15–17]. However, the pathophysiology of vascular leakage remains poorly described in humans, and no routine therapeutic is currently available to control it [4].


Many techniques have been developed to quantify the degree of leakage in animal models. The organ total/dry weight ratio (before and after dehydration) allows for a rough assessment of fluid accumulation over time [18]. Other authors utilized the extravasation of various dyes injected intravenously, quantifying the leakage through histology or measuring their elution from organs. These dyes enable a more precise quantification of the degree of leakage within shorter time windows, the most commonly used ones being Evans blue [19], fluorescent dextrans, and microspheres [20] (Fig. 1).

Only limited tools are available in humans. Transpulmonary thermodilution is a routinely available method. Still, it only explores the leakage from the *perfused* pulmonary vascular bed based on the extravascular lung water content and the pulmonary vascular permeability index [21–23]. Other methods of interest use indocyanine green, which rapidly binds to circulating proteins when injected intravenously. However, as multiple factors affect its clearance (e.g., vascular permeability, cardiac output, and liver function), its plasma concentration can only reliably estimate plasma

volume [24–26]. Indexing plasma volume evaluated by indocyanine green on the initial distribution volume of glucose (after a simultaneous injection of glucose, distributing rapidly in the extracellular space), may allow to more specifically address vascular permeability to proteins [24, 25]. However, this technique remains technically demanding and requires further validation. Bioelectrical impedance, which measures the water content between two electrodes, also yielded promising preliminary results [26]. Nevertheless, fluid balance remains the predominant marker of leakage in the clinical setting, although it is influenced by several confounding factors, e.g., local fluid loading policies, the individual patient's proteinemia, vasoplegia, and renal function [10, 14–16].

Pathophysiology of vascular leakage during sepsis Endothelial cell quiescence and barrier function

The barrier function of the quiescent endothelium allows a tight regulation of tissue homeostasis. Maintenance of the endothelium in a quiescent state is an active process involving a combination of many signaling pathways (Fig. 2) [27]. Laterally, endothelial cells (EC) interact strongly with adjacent EC via interendothelial junctions [28], which regulate endothelium integrity and paracellular trafficking of fluids and inflammatory cells [29, 30]. Three types of junctions are involved in EC-EC adhesion:

Fig. 1 A Representative heart cross sections from mice injected i.v. with fluorescent 70-kDa dextran (green) at the time of resuscitation (Low-Flow = 0 min) and harvested at Low-Flow min 4, in a model of resuscitated cardiac arrest, showing a massive extravasation of the dye. **B** sham animals (without cardiac arrest) in the same model. Vessels were counter-stained with fluorescent isolectin (red). Scale bar = 25 µm

Joffre et al. Annals of Intensive Care (2025) 15:79 Page 3 of 13

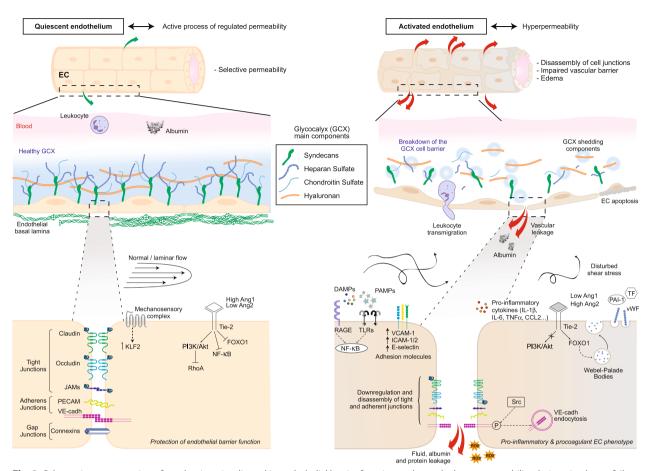


Fig. 2 Schematic representation of mechanisms implicated in endothelial barrier function and vascular hyperpermeability during circulatory failure

- Gap junctions, which rely on proteins from the connexin family, serve as key regulators of small molecules trafficking across the endothelium [31].
- Tight junctions are transmembrane proteins that interact with adjacent endothelial cells [32]. They are composed of members of claudin, occludin, junction-associated molecule (ESAM) and junctional adhesion molecules (JAMs), which bind to actin cytoskeleton through zona occludens 1 protein (ZO-1), cingulin, and paracingulin.
- *Adherens junctions* involve homophilic interactions of vascular endothelial (VE)-cadherin [33, 34].

VE-cadherin is a crucial regulator of paracellular permeability to fluids, which allows the trafficking of small molecules (< 3.6 μ m, <40 kDa) at basal state. Accordingly, an anti-VE-cadherin antibody induced major vascular leakage in mice in vivo [35].

Signals from the basement membrane also contribute to the maintenance of the quiescent state. In particular, interactions between integrins and extracellular matrix components activate downstream intracellular pathways responsible for stabilizing the endothelial barrier, such as the $\mathrm{PI_3K/AKT}$ pathway [36]. Matrikines (i.e., growth factors embedded in the extracellular matrix) and matricellular proteins also contribute to signaling through a quiescent state. Co-stimulation of vascular endothelial growth factor-A (VEGF-A) and fibroblast growth factors (FGF), particularly, is a strong signal for survival and maintenance of a quiescent phenotype through ERK1/2 signaling [27, 37].

The glycocalyx has also been referred to assume a significant role for maintaining endothelial barrier integrity. Composed of a complex network of glycoproteins and membrane-bound proteoglycans, it acts as a protective "jelly-like" layer coating the surface of vascular EC (Fig. 2). Maintaining proteins at the center of the vessel, it creates an osmotic gradient preventing water from leaking through the endothelial barrier. In addition, the glycocalyx also has essential signaling functions, particularly concerning flow sensing and its downstream mechano-transduction [38]. Glycocalyx components such as Syndecan-4 associating with $\beta 1$ integrin [36], function as receptors for fibroblast growth factors (FGFs), vascular

Joffre et al. Annals of Intensive Care (2025) 15:79 Page 4 of 13

endothelial growth factors (VEGFs), and platelet-derived growth factors (PDGFs) [39], to enhance EC barrier function.

Finally, shear stress is an important signal that promotes vascular integrity and the quiescence of EC [40]. The expression of the Krüppel-like family of transcription factors KLF2/4 is induced by laminar shear stress and maintains a quiescent endothelium by downregulating inflammation and inhibiting the pro-coagulant activity of EC. This consists in decreasing the expression of the surface tissue factor and PAI-1, and increasing thrombomodulin expression [37, 41]. Platelet endothelial cell adhesion molecule-1 (PECAM-1), VE-cadherin, and VEGF receptor-2 (VEGFR2) also form an essential mechanosensory complex mediating endothelial cell response to shear stress [27, 42, 43]. Circulating factors are also involved in maintaining a quiescent phenotype. In particular, Angiopoietin-1, secreted by adjacent mural cells, signals through its endothelial receptor Tie2 and activates the PI₃K/AKT pathway [44].

Microvascular endothelial activation and sepsis-induced capillary leak

In acute inflammation, both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) activate multiple redundant and pleiotropic pathways in microvascular endothelial cells [6]. This initiates a shift from a homeostatic phenotype characterized by hyperselective and regulated permeability to an activated phenotype characterized by hyperpermeability [45, 46]. Several mechanisms contribute to inflammation-induced permeability: destabilization of adherens and tight junctions, glycocalyx breakdown, oxidative stress, and cell death (Fig. 2).

The integrity of adherens junctions is modulated by tyrosine phosphorylation of its components, particularly VE-cadherin [47]. VE-cadherin is phosphorylated by stimuli inducing vascular leakage, mostly depending on Src and RhoA kinase activity, leading to its endocytosis and adherens junction destabilization. Phosphorylated RhoA and Rock also cause the formation of actin stress fibers, generating forces at the lateral cellular wall, which, in turn, widens the intercellular space and participates in junction disassembly and increased permeability [30, 48].

Consequently, various mediators such as Toll-Like Receptor (TLR) agonists, interleukin-6 (IL-6), thrombin, or VEGF may increase VE-cadherin phosphorylation, leading to its endocytosis in clathrin-coated vesicles [49]. For example, VEGF initiates a signaling cascade involving Src kinase, Vav2, and Rac, which triggers the serine phosphorylation of VE-cadherin. This results in the recruitment of β -arrestin2 and culminates in the endocytosis of VE-cadherin [50]. Inhibiting this VEGF

signaling pathway is one of the mechanisms by which the vascular protective agent angiopoietin-1 (Ang1) prevents VE-cadherin internalization and vascular leakage [51]. Additionally, cytokine-induced phosphorylation of the VE-cadherin cytoplasmic domain has been reported to trigger the cleavage of its extracellular domain [52], producing a soluble form detectable in the plasma as a biomarker of endothelial activation/dysfunction [53, 54]. Recently, Yang et al. have demonstrated that, during sepsis, circulating lactate activates the calpain1/2 in an ERK-dependent pathway, provoking the VE-cadherin proteolytic cleavage and its endocytosis in EC. This study also demonstrated that both genetically or pharmacologically inhibiting lactate signaling alleviated sepsis-associated capillary leak and improved outcomes in murine polymicrobial sepsis, suggesting a direct role of lactate in promoting endothelial permeability [55]. Similar to adherens junctions, several studies have reported the disruption of endothelial tight junctions in sepsis, reducing the protein levels of occludin and zonula occludens: for instance, tumor necrosis factor-alpha (TNF-α) was shown to disrupt claudin-5 at endothelial cell-cell junctions through NF-κB pathway activation [56].

In addition to cell-cell junctions, glycocalyx degradation can promote microvascular permeability and a local increase in oxidative stress [57]. Human studies provided evidence that sepsis and other acute inflammatory illnesses are associated with shedding of the glycocalyx, as measured by syndecan-1, hyaluronan, or glycosaminoglycans [58-61]. Their circulating levels are related to capillary leakage and poor outcome [62-65]. In a lipopolysaccharide (LPS) model of endotoxemia in mice, Kataoka et al. demonstrated that glycocalyx destruction increased microvascular macromolecule permeability and leukocyte adhesion [66]. Moreover, the intact glycocalyx serves as a sanctuary for two major antioxidant enzymes: superoxide dismutase (SOD) [67] and activated xanthine oxidase [68]. Therefore, glycocalyx degradation may cause a shift towards a pro-oxidant state. In turn, reactive oxygen species (ROS) can amplify glycocalyx degradation via proteolytic cleavage of syndecan-1 and sulfated glycosaminoglycan, ultimately further aggravating endothelial permeability [69, 70].

Finally, redox imbalance can induce EC death through apoptosis or necrosis. ROS (e.g., H₂O₂, OH*-) and reactive nitrogen species (e.g., ONOO⁻) trigger cell death programs both via the mitochondrial and extrinsic (death receptor and endoplasmic reticulum) pathways [71, 72]. The degree of redox imbalance determines whether EC undergo apoptosis or necroptosis, both of which can significantly enhance endothelial dysfunction [73]. Endothelial cell death involves the loss of structural and membrane properties, thus exacerbating permeability,

Joffre et al. Annals of Intensive Care (2025) 15:79 Page 5 of 13

capillary protein and fluid leakage, and, consequently, organ injury. In a model of peritonitis in mice, Gill et al. identified apoptotic microvascular endothelial cells in the lung and reported that pretreatment with a pan-caspase inhibitor attenuated capillary leakage [74]. This suggests that endothelial cell apoptosis may also mediate lung vascular hyperpermeability. Finally, necrotic cells release large amounts of DAMPs and phosphatidylserine (PS)-positive microparticles, amplifying local inflammation and enhancing capillary leakage [75]. Beyond apoptosis and necrosis, other forms of endothelial cell death have been shown to be involved in sepsis. "Pyroptosis" is a programmed form of necrosis activated by intracellular sensors of microbial products, which, in turn, trigger the formation of an intracellular complex known as the "inflammasome". This process amplifies the release of pro-inflammatory cytokines and causes damage to the endothelium. Caspase-1, a key effector of pyroptosis, has been shown to contribute to sepsis lethality [76]. More recently, PANoptosis has been described as a form of cell death that integrates features of pyroptosis, apoptosis, and necroptosis, with emerging evidence supporting its role in sepsis [77, 78]. However, the relative contribution of these forms of cell death to vascular leakage remains to be determined.

It could be argued that controlling vascular leakage may impair the immune response to pathogens during sepsis. However, numerous studies using intravital microscopy as well as cell and molecular biology have challenged the notion that vascular leakage is necessary for leukocyte trafficking through the endothelial barrier. In fact, an adequate and competent immune response involves tight regulation of leukocyte trafficking, which relies on a controlled "unzipping" of endothelial cell–cell junctions [79, 80]. Accordingly, several agents have been shown to reduce vascular leakage in animal models of sepsis without impairing leukocyte recruitment or pathogen clearance [79]. This "uncoupling" of fluid and leukocyte extravasation further reinforces the rationale for controlling trans-endothelial leakage during sepsis.

Vascular leakage in other forms of circulatory failure

Post-resuscitation syndrome

Vascular leakage is also a hallmark of the post-resuscitation syndrome [81], which shares many pathophysiological features with sepsis [9]. Ischemia–reperfusion (I/R) injury after cardiac arrest triggers an intense inflammatory reaction, with levels of circulating cytokines comparable with sepsis [82, 83], and high amounts of fluids needed to correct hypovolemia [9, 10, 84]. The resulting interstitial edema is thought to assume significant importance for organ function: an

only 4% increase in myocardial water content was sufficient to reduce cardiac function by more than 50% in animals [5, 85]. Myocardial edema, which occurs within minutes, might, therefore, contribute to the transient myocardial dysfunction observed after cardiac arrest [84]. Likewise, both in animal and human studies, post-cardiac arrest neurological deficit was directly related to cerebral edema [86, 87]. Targeting vascular leakage, hence, is a promising therapeutic approach after cardiac arrest.

During ischemia, the inflammatory process is induced by the release of DAMPS, mainly consisting of damaged cell debris released after necrosis (membrane, DNA, histone fragments...) [88]. DAMPs are recognized as danger signals by Pattern-Recognition Receptors (PRRs) expressed by resident inflammatory cells (macrophages and mastocytes), initiating an inflammatory response [89] and activating EC by producing pro-inflammatory cytokines [89–91]. Among these DAMPs, High-Mobility Group Box 1 (HMGB1) and S100 A8/A9 are pivotal during ischemia [92, 93], by activating the nuclear transcription factor NF-kB that signals through toll-like receptors 2 and 4 (TLR2/4) and receptors for advanced glycation end-products (RAGE), expressed by inflammatory cells. EC activation is responsible for the recruitment of inflammatory cells, which further enhances the inflammatory response to ischemia through ROS generation [89, 94]. The resulting inflammation strongly impairs the stability of inter-endothelial cell junctions. Upon activation, EC release the contents of Weibel-Palade bodies into the circulation, which contain a wide range of molecules responsible for endothelium activation and destabilization. Among those, Angiopoietin-2 is a potent inducer of vascular permeability as a competitor agonist of Angiopoietin-1 on the Tie-2 receptor [95]. Von Willebrand Factor, in combination with the release of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) by activated EC, induces a procoagulant endothelial state [43, 91] and thrombin generation, which contributes to vascular leakage from ischemic vessels [30]. ROS, along with many substances released by inflammatory cells (histamine, bradykinin, nitric oxide, leukotrienes, thromboxanes and prostaglandins), further increase vascular hyperpermeability [30, 48, 96, 97]. Finally, as for sepsis, the glycocalyx undergoes significant degradations during ischemia, contributing to capillary leakage [98].

In conclusion, while vascular leakage exhibits common pathophysiological features both during sepsis and the post-resuscitation syndrome, the precise common mechanisms, however, and any differences remain to be better described. Likewise, the contribution of tissue ischemia to sepsis-induced vascular leakage must be better characterized.

Joffre et al. Annals of Intensive Care (2025) 15:79 Page 6 of 13

Cardiogenic shock

Severe cardiogenic shock is also responsible for ischemiainduced tissue lesions, thus triggering systemic hyperinflammation. This leads to the induction of a complex hemodynamic profile, combining features of both low cardiac output and inflammation-induced vasoplegia, and vascular leakage [99], the degree of which is directly related to patient severity [8]. Accordingly, the angio-1/2 ratio correlates with mortality [7]. Nevertheless, controlling vascular leakage during cardiogenic shock remains an unresolved issue.

Hemorrhagic shock

Similar to sepsis, trauma and hemorrhage lead to systemic hyper-inflammation triggered by direct tissue damage per se [100, 101] and shock-induced tissue hypoxia [102]. Therefore, "repayment of the O₂ debt" [103] to restore/maintain tissue O2 supply is a cornerstone of the management. However, in analogy to the post-resuscitation syndrome, restoring tissue perfusion induces an I/Rtype of injury [104]. The type and amount of aggressive fluid resuscitation [105, 106] and catecholamine infusion [107] to achieve adequate perfusion, may further aggravate this effect. Hence, diffuse capillary leakage was already described in the context of trauma-and-hemorrhage in the 1970s. However, despite progress in the understanding of its pathophysiology, its precise mechanisms remain unclear [108], and, in particular, practical measures for its prevention and/or treatment are still lacking. The local trauma-induced release of cytokines, complement, arachidonic acid derivatives, and ROS primarily induces repair processes. However, an overwhelming injury may cause systemic spillover of these mediators, thereby initiating the above-mentioned systemic hyper-inflammation. In addition, whereas a single, moderate, and/or localized trauma does not per se cause this systemic response, any additional, even delayed, second stress may do so [109]. This is referred to as the "twohit"theory [109, 110], emphasizing the role of impaired handling of a second stress, e.g., follow-up surgery, secondary infection, and/or transfusion of blood products.

Evidence of trauma-related vascular leakage has been reported for virtually all organs, i.e., the lung [111–117], the gut as documented by translocation of endotoxin and/or live bacteria [116, 118–122], the heart [123, 124], the liver [115, 125], the kidney [114, 115, 126, 127] and the brain [128]. Not only does trauma aggravate vascular barrier dysfunction resulting from hemorrhagic shock [129], but also conversely hemorrhage aggravates any trauma-related barrier destabilization [115, 116]. In this context, hemorrhage increased syndecan-1 levels beyond those induced by trauma alone, suggesting that the endothelial glycocalyx may assume importance for

hemorrhage-related vascular leakage. In fact, exogenous albumin attenuated albumin leakage into the extravascular space, indicating the role of the endothelial glycocalyx for intravascular maintenance of plasma proteins [130].

In experimental trauma-and-hemorrhage and subsequent (fluid) resuscitation, various therapeutic strategies have been tested to reduce microvascular leakage (for a systematic review see [131]): these approaches comprise modulation of energy metabolism (e.g. hypothermia [126, 132]), targeting inflammatory pathways (e.g., via complement blockade [133] or vagus nerve stimulation [134]), the angiopoietin/Tie-2 system (e.g., vasculotide [135]), administration of sex hormones [136, 137] or sphingosine [138], the use of hyperoxia (i.e., increased inspired O₂ fractions [126, 127]), vasopressin [139] or its analogues [140] rather than catecholamines to counteract hypotension, and targeted choice of intravascular fluid resuscitation (e.g., the use of blood products [141] and/or synthetic colloids rather than crystalloids [142], or hypertonic saline [143]; for detailed review see [144, 145]).

Clearly, the existing data remains equivocal, and it remains an open question whether any promising experimental finding can be confirmed in clinically relevant resuscitated models of trauma and hemorrhage. So far, however, none of these therapeutic strategies has found its way into clinical practice.

More advanced therapeutic strategies under investigation to control vascular leakage during circulatory failure

A wide range of potential treatments to prevent or reduce vascular leakage during the various forms of circulatory failure have been or are currently being investigated in pre-clinical studies [146]. Some are more advanced and have translated to clinical investigations.

Vasopressors and endothelial permeability

Vasopressors are pivotal during the early management of shock to restore mean arterial pressure and sustain organ perfusion. Nevertheless, their microvascular effects have often been overlooked, particularly regarding endothelial permeability. In an era marked by increasing interest in non-catecholaminergic agents like vasopressin or angiotensin-II, the examination of microvascular effects of both catecholaminergic and non-catecholaminergic agents becomes imperative.

In ex vivo experiments utilizing human lung microvascular endothelial cells (L-HMVEC), Joffre et al. reported that epinephrine and norepinephrine significantly reduce Toll-Like Receptor (TLR) agonist and proinflammatory cytokine-induced endothelial permeability [147]. This effect was demonstrated to be mediated through both ß1 and ß2-adrenergic receptors. Mechanistically, Joffre et al. Annals of Intensive Care (2025) 15:79 Page 7 of 13

ß2-adrenergic receptor activation reduces LPS-induced permeability through cytoskeletal rearrangement, contributing to the maintenance of impermeability under inflammatory conditions [148, 149]. Clinical trials also support these experimental findings; in the BALTI-1 study on ARDS patients, the salbutamol group exhibited significantly lower lung water at day 7 compared to the control group [150], suggesting that \(\mathbb{G}\)-adrenergic stimulation may attenuate capillary leakage. This effect, however, did not translate into increased survival in the larger confirmatory randomized trial BALTI-2 [151]. The CEN-SER study on septic shock patients receiving early norepinephrine indicated a lower occurrence of pulmonary edema (14% vs. 28%; p = 0.004) despite similar fluid volumes, suggesting that early catecholamine administration may limit sepsis-induced capillary leak syndrome [152].

Regarding vasopressin, in vivo experiments of pneumonia-induced sepsis in sheep demonstrated that the V2-receptor antagonist tolvaptan significantly attenuated fluid retention and reduced lung water content [153]. However, in rats undergoing hemorrhagic shock, vasopressin worsened pulmonary and renal capillary leakage [139]. Vasopressin receptor blockade reversed bloodbrain barrier hyperpermeability during experimental autoimmune encephalomyelitis in rats, suggesting that vasopressin might be deleterious to blood-brain barrier permeability [154]. Therefore, arginine vasopressin could potentially exacerbate capillary leak.

Data regarding angiotensin-2 are limited. Ex vivo studies using transcriptomics reported that angiotensin-2 induced a concentration and time-dependent increase in VEGF mRNA expression by human vascular smooth muscle cells [155]. In human umbilical vein endothelial cells (HUVEC), angiotensin II was reported to increase permeability and plasmalemmal vesicle-1 (PV-1) expression, a protein associated with microvascular leakage [156]. Similarly, under high glucose concentrations, angiotensin II also aggravated LPS-induced permeability in L-HMVEC [157]. Nevertheless, using experimental transendothelial hydraulic permeability measurements, Victortino et al. observed that while microvascular permeability is increased by angiotensin-2 under basal conditions, it might be reduced in ATP-activated endothelium [158]. Overall, data on microvascular function and capillary leak are crucially needed from clinical trials exploring the effects of non-catecholaminergic vasopressors.

Adrecizumab

Adrenomedullin is a protein belonging to the calcitonin gene-related family that has dual vascular effects. It reduces inflammation-induced endothelial hyperpermeability and promotes smooth muscle cell-related

vasorelaxation [159-162]. Adrecizumab, a humanized monoclonal non-neutralizing anti-adrenomedullin antibody (clone HAM8101), increased adrenomedullin bioavailability in the plasma by preventing adrenomedullin degradation and inhibiting its translation from the plasma to the interstitium. Therefore, it was tested during sepsis to attenuate both vascular leakage and vasoplegia [159]. It efficiently reduced vascular leakage and improved survival in pre-clinical models of sepsis [163], and, consequently, was evaluated in a phase 2a doubleblind randomized trial, the AdrenOSS-2 biomarkerguided trial [159]. 301 septic shock patients with plasma bio-adrenomedullin concentrations > 70 pg/ml less than 12 h after vasopressors initiation were randomized to receive a single dose of adrecizumab or its placebo. With comparable adverse events between groups, the trial demonstrated the safety and tolerability of the drug. Although the trial was not designed for efficacy, patients receiving adrecizumab exhibited a more pronounced reduction in their SOFA score at day 7 and a comparable sepsis-support index (days alive without hemodynamic, respiratory or renal support) at day 30, while mortality at day 28 did not differ between groups (24 vs. 28% in the control group, p = 0.44). Further research is ongoing for the development of this drug during sepsis [159].

Given the deleterious role of vascular hyperpermeabilty and an association between circulating adrenomedullin levels and patient outcomes during cardiogenic shock, adrecizumab was also evaluated during this condition [164]. In the ACCOST-HH trial, a double-blind multicenter randomized trial, it did not provide any advantage on the primary endpoint of the number of days alive without cardiovascular organ support at day 30, nor on mortality (40 vs 40%, p = 0.98). Serious adverse events, however, were comparable between groups, further supporting the good tolerance of the drug [165].

FX06

FX06 is a drug containing the fibrin-derived peptide $B\beta15-42$, which stabilizes VE-cadherin-dependent interendothelial cell junctions [20, 166, 167]. It was first developed in murine myocardial I/R injury, reducing vascular leakage and tissue damage [168]. In a phase II trial conducted on 234 patients suffering from acute coronary syndrome, patients treated with FX06 exhibited a 58% decrease in their early necrotic core zone, although the primary endpoint of total infarct size at day 5 remained unaffected [169]. Importantly, adverse events were comparable between groups, indicating a high safety profile for the drug.

FX06 also reduced vascular leakage in several pre-clinical models of circulatory failure. In a pig model of cardiac arrest, i.v. FX06 decreased the need for fluid intake

Joffre et al. Annals of Intensive Care (2025) 15:79 Page 8 of 13

and improved the neurocognitive recovery of the animals [17]. Moreover, it reduced circulating levels of cytokines IL-1 β , IL-6, TNF- α , IL-10, and MCP-1 in a mouse model of cecal-ligation-and-puncture-induced sepsis. It also reduced extravasation of i.v. injected fluorospheres and Evans blue in a mouse model of endotoxemia [20, 170]. Finally, during resuscitation from hemorrhagic shock in swine, FX06 attenuated markers of organ damage, and reduced circulating endotoxemia and inflammation [171, 172]. Nevertheless, FX06 yielded disappointing results in a phase II double-blind randomized study evaluating its efficacy during SARS-CoV-2-induced acute respiratory distress syndrome. In particular, it had no detectable effect on pulmonary edema [173].

Research is, however, currently ongoing in the setting of circulatory failure, particularly post-cardiac arrest shock, which would allow an early administration when compared to ARDS.

PCSK9 inhibitors

Proprotein Convertase Subtilisin/Kexin-9 (PCSK9) is a serine protease implicated in the homeostasis of low-density lipoprotein (LDL) receptors, key regulators of the inflammasome complex. During sepsis, PCSK9 is involved in its activation and the release of pro-inflammatory cytokines [174]. It has a more specific role on endothelial cell dysfunction, promoting ROS generation from the endothelium under inflammatory and abnormal shear stress conditions [175]. In a phase 2, double-blind randomized and controlled trial, the PCSK9 inhibitor evolocumab significantly decreased the intubation rate of patients with Sars-CoV-2-induced ARDS [176]. Studies are currently ongoing to characterize its role during human sepsis.

Modulators of angiopoietin/tie-2 pathway

Tie-2, a tyrosine kinase receptor expressed by endothelial cells, is a crucial regulator of endothelial permeability. Its main agonist, Angiopoietin-1 (Ang-1), promotes the vascular barrier function through cell-cell junction stabilization and strengthening of actin cytoskeleton, via activation of the Akt pathway [177]. In contrast, angiopoietin-2 (Ang-2), competing with Ang-1 for Tie-2 ligation, acts as a strong destabilizing agent of the endothelial barrier. Contained in Weibel-Palade bodies of endothelial cells, it is released at very early stages of endothelial cell activation [178]. Accordingly, Ang-2 levels directly related to pro-inflammatory cytokines concentrations during sepsis, and the Ang-1/2 ratio correlates with disease severity and outcome [179–181]. Hence, manipulating the angiopoietin/Tie-2 pathway thus also represents an attractive strategy to control vascular leakage during sepsis. Several drugs have been evaluated so far. Vasculotide, a synthetic Tie-2 agonist, has been shown to reduce cytokine response and, ultimately, dose-dependently improve survival in a fluid-resuscitated murine model of cecal ligation and puncture-induced polymicrobial sepsis [182]. Recombinant Ang-1 reduced vascular leakage and neutrophil infiltration in the lungs in a similar murine model of polymicrobial, abdominal sepsis [183]. Finally, an anti-Ang-2 antibody with Tie-2 agonist properties also demonstrated protective effects on the vasculature and improved survival in three other different murine models of sepsis [184]. A phase 2a study is currently recruiting to evaluate the safety and tolerability of the synthetic Tie-2 agonist AV-001 in humans with pneumonia (NCT05123755).

Other strategies

Many other strategies aiming at correcting dysregulated inflammation are currently investigated during the different forms of circulatory failure (mostly during sepsis), which may indirectly help controlling vascular leakage [146, 185]. Moreover, better understanding of patients heterogeneity regarding inflammatory phenotypes may help reappraising treatments that failed demonstrating their efficacy in humans, despite encouraging results in pre-clinical studies [186, 187].

Conclusion

Inflammation-induced vascular leakage is a major contributor to organ dysfunction during circulatory failure and is thought to crucially impact patients' outcome. Despite promising pre-clinical findings, none of the tested drugs translated to routine clinical care. Vascular hyperpermeability during shock, thus, remains an area of research to better characterize its mechanisms in humans and consecutively develop new treatments. Better characterization of the individual patient's phenotype associated with vascular leakage is also mandatory to further evaluate these new treatments.

Ackowledgments

We thank Obaid Alzaabi, for his participation in manuscript preparation, and France Maloumian for her help in the figures.

Availability and data materials

Not applicable.

Abbreviations

DAMPS Damage-associated molecular patterns

EC Endothelial cell

FGF Fibroblast growth factors

HUVEC Human umbilical vein endothelial cells

_ Interleukin

KLF Krüppel-like family of transcription factors

LPS Lipopolysaccharide

Joffre et al. Annals of Intensive Care (2025) 15:79 Page 9 of 13

L-HMVEC Lung human microvascular endothelial cell PAMPS Pathogen associated molecular patterns PCSK9 Proprotein convertase subtilisin/kexin-9 PECAM Platelet endothelial cell adhesion molecule

PRR Pattern-recognition receptors
ROS Reactive oxygen species
SOD Superoxide dismutase
TLR Toll-like receptor

TNF-A Tumor necrosis factor-alpha VE-CADHERIN Vascular endothelial-cadherin VEGF Vascular endothelial growth factor

VEGFR Vegf receptor

Author contributions

All the authors met authorship criteria and participated significantly to the study; in particular, JJ, PR, HK, IM, AR, SG, and NB were involved in conception and design; JJ, PR, HK, IM, AR, SG, and NB wrote the article; JJ, PR, HK, YL, IM, AR, AG, BS, LK, LB, MV, TM, YJ, SB, LS, SG, and NB provided critical revisions to the manuscript. All the authors read and approved the final manuscript.

Funding

None.

Data availability

All original data provided in this review will be shared beginning with publication with no end date. These data will beavailable to researchers to who provide a methodologically sound proposal for the purposes of achieving specificaims outlined in that proposal. Proposals should be directed to the corresponding author via email:nicolas.brechot@aphp.fr and will be reviewed by the senior authors of the study.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

NB is on F4-Pharma advisory board, without any financial competing interest. He received a grant from the French Ministry of Health for a study evaluating FX06 during post-cardiac arrest syndrome, and reports personal fees from Getinge. Others do not report any competing interests.

Author details

¹Service de Réanimation Médicale, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France. ²Centre de Recherche Saint Antoine INSERM, U938, Sorbonne University, Paris, France. ³Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany. ⁴Service de Réanimation, Centre Hospitalier de Cayenne, Guyane, France. ⁵Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale (INSERM), Université PSL, Paris, France. ⁶Pediatric and Neonatal Intensive Care Unit, Armand-Trousseau Hospital, APHP, 26 Avenue du Dr Arnold Netter, 75012 Paris, France. ⁷Sorbonne University, Paris, France. 8INSERM, IMRB, Univ Paris Est Créteil, 94010 Créteil, France. 9Department of Intensive Care Medicine, Critical Care Center, CHU Lille, Univ. Lille, 59000 Lille, France. 10 CIIL (Centre d'Infection et d'Immunié de Lille), Institut Pasteur de Lille, U1019-UMR9017, 59000 Lille, France. ¹¹Service de Réanimation Polyvalente Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France. 12 ToNIC Lab (Toulouse Neurolmaging Center) INSERM/UPS UMR 1214, 31300 Toulouse, France. ¹³Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0HS, UK. 14 Department of Critical Care Medicine, Imperial College Healthcare NHS Trust, London, UK. ¹⁵Département d'Anesthésie, Chirurgie, Interventionnel et Service de Réanimation, Gustave Roussy, FR94805 Villejuif, France. ¹⁶U1138 Metabolomics and Cell Biology Platform, Université Paris Saclay, 94805 Villejuif, France. ¹⁷Service de Réanimation Médicochirurgicale Pédiatrique, CHU Necker-Enfants Malades, Assistance Publique-Hôpitaux de

Paris (AP-HP), Paris, France. ¹⁸Unité de VNI Et du Sommeil de l'enfant, URP7330 VIFASOM, Université Paris Cité, Paris, France. ¹⁹Department of Intensive Care Medicine, William Morey General Hospital, Chalon-Sur-Saône, France. ²⁰Lipness Team, Institut National de La Santé et de la Recherche Médicale (INSERM) Research Centre Lipides, Nutrition, Cancer - Unité Mixte de Recherche (LNC-UMR)1231, University of Burgundy, Dijon, France. ²¹Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France. ²²Services de Réanimation Chirurgicale Cardiovasculaire Et de Chirurgie Cardiaque, CHRU Tours, Tours, France. ²³ Faculté de Médecine de Tours, INSERM, U1100 Centre d'Etudes des Pathologies Respiratoires, Tours, France. ²⁴Service de Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France. ²⁵Université Paris Cité, Paris, France. ²⁶Department of Intensive Care Medicine, Groupe Hospitalier de la Région Mulhouse Sud Alsace, Mulhouse, France. ²⁷Lipness Team, INSERM Research Team, LNC, UMR 1231 and LabEx LipSTIC, University of Burgundy, Dijon, France. ²⁸Service de Réanimation Médicale, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France. ²⁹Département de médecine intensive - réanimation et médecine hyperbare, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers Cedex 09, France.

Received: 13 December 2024 Accepted: 5 April 2025 Published online: 06 June 2025

References

- Mai J, Virtue A, Shen J, Wang H, Yang X-F. An evolving new paradigm: endothelial cells—conditional innate immune cells. J Hematol Oncol. 2013;6:61.
- Rasid O, Cavaillon J-M. Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiol. 2016;11:293–314.
- 3. Opal SM, van der Poll T. Endothelial barrier dysfunction in septic shock. J Intern Med. 2015;277:277–93.
- Vincent J-L, Ince C, Pickkers P. Endothelial dysfunction: a therapeutic target in bacterial sepsis? Expert Opin Ther Targets. 2021;25:733–48.
- Laine GA, Allen SJ. Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ Res. 1991;68:1713–21.
- 6. Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020;202:361–70.
- Link A, Pöss J, Rbah R, Barth C, Feth L, Selejan S, et al. Circulating angiopoietins and cardiovascular mortality in cardiogenic shock. Eur Heart J. 2013;34:1651–62
- Schmidt M, Bailey M, Kelly J, Hodgson C, Cooper DJ, Scheinkestel C, et al. Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation. Intensive Care Med. 2014;40:1256–66.
- Adrie C, Adib-Conquy M, Laurent I, Monchi M, Vinsonneau C, Fitting C, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a "sepsis-like" syndrome. Circulation. 2002;106:562–8.
- 10. Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118:2452–83.
- Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208:2581–90.
- 12. Acheampong A, Vincent J-L. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.
- Besnier E, Boubèche S, Clavier T, Popoff B, Dureuil B, Doguet F, et al. Early positive fluid balance is associated with mortality in patients treated with veno-arterial extra corporeal membrane oxygenation for cardiogenic shock: a retrospective cohort study. Shock. 2020;53:426–33.

 Micek ST, McEvoy C, McKenzie M, Hampton N, Doherty JA, Kollef MH. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Crit Care. 2013;17:R246.

(2025) 15:79

- van Lier D, Kox M, Pickkers P. Promotion of vascular integrity in sepsis through modulation of bioactive adrenomedullin and dipeptidyl peptidase. J Intern Med. 2020. https://doi.org/10.1111/joim.13220.
- London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010;2:2319.
- Bergt S, Gruenewald M, Beltschany C, Grub A, Neumann T, Albrecht M, et al. The fibrin-derived peptide Bβ15-42 (FX06) ameliorates vascular leakage and improves survival and neurocognitive recovery: implications from two animal models of cardiopulmonary resuscitation. Crit Care Med. 2016;44:e988-995.
- Kim B, Jang C, Dharaneeswaran H, Li J, Bhide M, Yang S, et al. Endothelial pyruvate kinase M2 maintains vascular integrity. J Clin Invest. 128: 4543–56.
- Yano K, Liaw PC, Mullington JM, Shih S-C, Okada H, Bodyak N, et al. Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality. J Exp Med. 2006;203:1447–58.
- Gröger M, Pasteiner W, Ignatyev G, Matt U, Knapp S, Atrasheuskaya A, et al. Peptide Bbeta(15–42) preserves endothelial barrier function in shock. PLoS ONE. 2009;4: e5391.
- 21. Tagami T, Ong MEH. Extravascular lung water measurements in acute respiratory distress syndrome: why, how, and when? Curr Opin Crit Care. 2018;24:209–15.
- Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14:R162.
- Jozwiak M, Teboul J-L, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care. 2015:5:38.
- Suzuki A, Ishihara H, Hashiba E, Matsui A, Matsuki A. Detection of histamine-induced capillary protein leakage and hypovolaemia by determination of indocyanine green and glucose dilution method in dogs. Intensive Care Med. 1999;25:304–10.
- Ishihara H, Matsui A, Muraoka M, Tanabe T, Tsubo T, Matsuki A. Detection of capillary protein leakage by indocyanine green and glucose dilutions in septic patients. Crit Care Med. 2000;28:620–6.
- Marx G, Vangerow B, Burczyk C, Gratz KF, Maassen N, Cobas Meyer M, et al. Evaluation of noninvasive determinants for capillary leakage syndrome in septic shock patients. Intensive Care Med. 2000;26:1252–8.
- Ricard N, Bailly S, Guignabert C, Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol. 2021;18:565–80.
- Reglero-Real N, Colom B, Bodkin JV, Nourshargh S. Endothelial cell junctional adhesion molecules: role and regulation of expression in inflammation. Arterioscler Thromb Vasc Biol. 2016;36:2048–57.
- Sukriti S, Tauseef M, Yazbeck P, Mehta D. Mechanisms regulating endothelial permeability. Pulm Circ. 2014;4:535–51.
- Claesson-Welsh L. Vascular permeability—the essentials. Ups J Med Sci. 2015;120:135–43.
- Pohl U. Connexins: key players in the control of vascular plasticity and function. Physiol Rev. 2020;100:525–72.
- 32. Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17:564–80.
- 33. Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol. 2004;5:261–70.
- Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol. 2008;28:223–32.
- Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA. 1999;96:9815–20.
- Pulous FE, Petrich BG. Integrin-dependent regulation of the endothelial barrier. Tissue Barriers. 2019;7:1685844.
- 37. Gao Y, Galis ZS. Exploring the role of endothelial cell resilience in cardiovascular health and disease. Arterioscler Thromb Vasc Biol. 2021;41:179–85.

- 38. Pillinger NL, Kam P. Endothelial glycocalyx: basic science and clinical implications. Anaesth Intensive Care. 2017;45:295–307.
- 39. Elfenbein A, Simons M. Syndecan-4 signaling at a glance. J Cell Sci. 2013;126:3799–804.
- Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest. 2016;126:821–8.
- 41. Andueza A, Kumar S, Kim J, Kang D-W, Mumme HL, Perez JI, et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020;33: 108491.
- Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437:426–31.
- Krenning G, Barauna VG, Krieger JE, Harmsen MC, Moonen J-RAJ. Endothelial plasticity: shifting phenotypes through force feedback. Stem Cells Int. 2016;2016:9762959.
- 44. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem. 2000;275:9102–5.
- Dejana E, Orsenigo F. Endothelial adherens junctions at a glance. J Cell Sci. 2013;126:2545–9.
- 46. Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL. Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med. 2011;3:88ps25.
- Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci. 2008:121:2115–22
- Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol. 2010;72:463–93.
- Xiao K, Allison DF, Kottke MD, Summers S, Sorescu GP, Faundez V, et al. Mechanisms of VE-cadherin processing and degradation in microvascular endothelial cells. J Biol Chem. 2003;278:19199–208.
- Xiao K, Garner J, Buckley KM, Vincent PA, Chiasson CM, Dejana E, et al. p120-Catenin regulates clathrin-dependent endocytosis of VEcadherin. Mol Biol Cell. 2005;16:5141–51.
- 51. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34.
- Su W, Kowalczyk AP. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell. 2017;28:76–84.
- 53. Yu W-K, McNeil JB, Wickersham NE, Shaver CM, Bastarache JA, Ware LB. Vascular endothelial cadherin shedding is more severe in sepsis patients with severe acute kidney injury. Crit Care. 2019;23:18.
- 54. Zhang R-Y, Liu Y-Y, Li L, Cui W, Zhao K-J, Huang W-C, et al. Increased levels of soluble vascular endothelial cadherin are associated with poor outcome in severe sepsis. J Int Med Res. 2010;38:1497–506.
- Yang K, Fan M, Wang X, Xu J, Wang Y, Gill PS, et al. Lactate induces vascular permeability via disruption of VE-cadherin in endothelial cells during sepsis. Sci Adv. 2022;8:eabm8965.
- 56. Clark PR, Kim RK, Pober JS, Kluger MS. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κβ-dependent phases. PLoS ONE. 2015;10: e0120075.
- Joffre J, Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid Redox Signal. 2021;35:1291–307.
- Schmidt EP, Overdier KH, Sun X, Lin L, Liu X, Yang Y, et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med. 2016;194:439–49.
- 59. Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care. 2019;23:16.
- Rc S, Md R, Ep S, Ja H. Endothelial glycocalyx degradation during sepsis: Causes and consequences. Matrix biology plus 2021;12. https://pub-med.ncbi.nlm.nih.gov/34917925/
- 61. Grundmann S, Fink K, Rabadzhieva L, Bourgeois N, Schwab T, Moser M, et al. Perturbation of the endothelial glycocalyx in post cardiac arrest syndrome. Resuscitation. 2012;83:715–20.
- Ostrowski SR, Haase N, Müller RB, Møller MH, Pott FC, Perner A, et al. Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. Crit Care. 2015;19:191.

- 63. Holzmann MS, Winkler MS, Strunden MS, Izbicki JR, Schoen G, Greiwe G, et al. Syndecan-1 as a biomarker for sepsis survival after major abdominal surgery. Biomark Med. 2018;12:119–27.
- Ikeda M, Matsumoto H, Ogura H, Hirose T, Shimizu K, Yamamoto K, et al. Circulating syndecan-1 predicts the development of disseminated intravascular coagulation in patients with sepsis. J Crit Care. 2018:43:48–53.
- Smart L, Bosio E, Macdonald SPJ, Dull R, Fatovich DM, Neil C, et al. Glycocalyx biomarker syndecan-1 is a stronger predictor of respiratory failure in patients with sepsis due to pneumonia, compared to endocan. J Crit Care. 2018;47:93–8.
- 66. Kataoka H, Ushiyama A, Akimoto Y, Matsubara S, Kawakami H, Iijima T. Structural behavior of the endothelial glycocalyx is associated with pathophysiologic status in septic mice: an integrated approach to analyzing the behavior and function of the glycocalyx using both electron and fluorescence intravital microscopy. Anesth Analg. 2017;125:874–83.
- Karlsson K, Lindahl U, Marklund SL. Binding of human extracellular superoxide dismutase C to sulphated glycosaminoglycans. Biochem J. 1988;256:29–33.
- Adachi T, Fukushima T, Usami Y, Hirano K. Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface. Biochem J. 1993;289(Pt 2):523–7.
- Rubio-Gayosso I, Platts SH, Duling BR. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2006;290:H2247-2256.
- Ali MM, Mahmoud AM, Le Master E, Levitan I, Phillips SA. Role of matrix metalloproteinases and histone deacetylase in oxidative stress-induced degradation of the endothelial glycocalyx. Am J Physiol Heart Circ Physiol. 2019;316:H647–63.
- Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, et al. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 2007:9:49–89.
- Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863:2977–92.
- Huet O, Dupic L, Harrois A, Duranteau J. Oxidative stress and endothelial dysfunction during sepsis. Front Biosci. 2011;16:1986–95.
- Gill SE, Rohan M, Mehta S. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respir Res. 2015;16:109.
- 75. Furuta Y, Zhou Z. How do necrotic cells expose phosphatidylserine to attract their predators-what's unique and what's in common with apoptotic cells. Front Cell Dev Biol. 2023;11:1170551.
- 76. Singla S, Machado RF. Death of the endothelium in sepsis: understanding the crime scene. Am J Respir Cell Mol Biol. 2018;59:3–4.
- 77. Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: mechanisms, biology, and role in disease. Immunol Rev. 2024;321:246–62.
- Xu J, Zhu M, Luo P, Gong Y. Machine learning screening and validation of PANoptosis-related gene signatures in sepsis. J Inflamm Res. 2024;17:4765–80.
- 79. Filewod NC, Lee WL. Inflammation without vascular leakage. Science fiction no longer? Am J Respir Crit Care Med. 2019;200:1472–6.
- 80. Martin TR, Pistorese BP, Chi EY, Goodman RB, Matthay MA. Effects of leukotriene B4 in the human lung Recruitment of neutrophils into the alveolar spaces without a change in protein permeability. J Clin Invest. 1989;84:1609–19.
- 81. Jozwiak M, Bougouin W, Geri G, Grimaldi D, Cariou A. Post-resuscitation shock: recent advances in pathophysiology and treatment. Ann Intensive Care. 2020;10:170.
- Bro-Jeppesen J, Kjaergaard J, Wanscher M, Nielsen N, Friberg H, Bjerre M, et al. Systemic inflammatory response and potential prognostic implications after out-of-hospital cardiac arrest: a substudy of the target temperature management trial. Crit Care Med. 2015;43:1223–32.
- Bro-Jeppesen J, Kjaergaard J, Stammet P, Wise MP, Hovdenes J, Åneman A, et al. Predictive value of interleukin-6 in post-cardiac arrest patients treated with targeted temperature management at 33 °C or 36 °C. Resuscitation. 2016;98:1–8.
- 84. Laurent I, Monchi M, Chiche J-D, Joly L-M, Spaulding C, Bourgeois B, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol. 2002;40:2110–6.

- 85. Mehlhorn U, Geissler HJ, Laine GA, Allen SJ. Myocardial fluid balance. Eur J Cardiothorac Surg. 2001;20:1220–30.
- Cavaglia M, Seshadri SG, Marchand JE, Ochocki CL, Mee RBB, Bokesch PM. Increased transcription factor expression and permeability of the blood brain barrier associated with cardiopulmonary bypass in lambs. Ann Thorac Surg. 2004;78:1418–25.
- 87. Moseby-Knappe M, Pellis T, Dragancea I, Friberg H, Nielsen N, Horn J, et al. Head computed tomography for prognostication of poor outcome in comatose patients after cardiac arrest and targeted temperature management. Resuscitation. 2017;119:89–94.
- 88. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.
- Lai S-L, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol Life Sci. 2019;76:1365–80.
- Amersfoort J, Eelen G, Carmeliet P. Immunomodulation by endothelial cells—partnering up with the immune system? Nat Rev Immunol. 2022;22:576–88.
- 91. Tombor LS, Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol. 2022;117:35.
- 92. Schiopu A, Cotoi OS. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators Inflamm. 2013;2013: 828354.
- 93. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17:773–89.
- Mai J, Virtue A, Shen J, Wang H, Yang X-F. An evolving new paradigm: endothelial cells—conditional innate immune cells. J Hematol Oncol. 2013;6:61
- 95. Hellenthal KEM, Brabenec L, Wagner N-M. Regulation and dysregulation of endothelial permeability during systemic inflammation. Cells. 2022;11:1935
- Kleinbongard P, Heusch G, Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 2010;127:295–314.
- Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med. 2012;52:556–92.
- 98. Abassi Z, Armaly Z, Heyman SN. Glycocalyx degradation in ischemiareperfusion injury. Am J Pathol. 2020;190:752–67.
- 99. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117:686–97.
- Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.
- Pantalone D, Bergamini C, Martellucci J, Alemanno G, Bruscino A, Maltinti G, et al. The role of DAMPS in burns and hemorrhagic shock immune response: pathophysiology and clinical issues. Review Int J Mol Sci. 2021;22:7020.
- 102. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364:656–65.
- 103. Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment. Shock. 2010;33:113–22.
- Angele MK, Schneider CP, Chaudry IH. Bench-to-bedside review: latest results in hemorrhagic shock. Crit Care. 2008;12:218.
- 105. Chi Y, Jiang X, Chai J, Chang Y, Liu T, Liu X, et al. Protective effect of restrictive resuscitation on vascular endothelial glycocalyx in pigs with traumatic hemorrhagic shock. Ann Transl Med. 2022;10:177.
- Zhao X, Yuan W, Wang S, Wu J, Li C. The regulatory effects of serum catecholamines and endothelial cells in pig hemorrhagic shock and fluid resuscitation models. Resusc Plus. 2024;18: 100618.
- Hartmann C, Radermacher P, Wepler M, Nußbaum B. Non-hemodynamic effects of catecholamines. Shock. 2017;48:390–400.
- Duan C-Y, Zhang J, Wu H-L, Li T, Liu L-M. Regulatory mechanisms, prophylaxis and treatment of vascular leakage following severe trauma and shock. Mil Med Res. 2017;4:11.
- Saadia R, Schein M. Multiple organ failure. How valid is the "two hit" model? J Accid Emerg Med. 1999;16:163–6.
- Garrison RN, Spain DA, Wilson MA, Keelen PA, Harris PD. Microvascular changes explain the "two-hit" theory of multiple organ failure. Ann Surg. 1998;227:851–60.

- 111. Tranbaugh RF, Elings VB, Christensen J, Lewis FR. Determinants of pulmonary interstitial fluid accumulation after trauma. J Trauma. 1982;22:820–6.
- 112. Sturm JA, Wisner DH, Oestern HJ, Kant CJ, Tscherne H, Creutzig H. Increased lung capillary permeability after trauma: a prospective clinical study. J Trauma. 1986;26:409–18.
- Chew MS, Ihrman L, During J, Bergenzaun L, Ersson A, Undén J, et al. Extravascular lung water index improves the diagnostic accuracy of lung injury in patients with shock. Crit Care. 2012;16:R1.
- Datzmann T, Hoffmann A, McCook O, Merz T, Wachter U, Preuss J, et al. Effects of sodium thiosulfate (Na2S2O3) during resuscitation from hemorrhagic shock in swine with preexisting atherosclerosis. Pharmacol Res. 2020;151: 104536.
- Denk S, Weckbach S, Eisele P, Braun CK, Wiegner R, Ohmann JJ, et al. Role of hemorrhagic shock in experimental polytrauma. Shock. 2018;49:154–63
- Halbgebauer R, Braun CK, Denk S, Mayer B, Cinelli P, Radermacher P, et al. Hemorrhagic shock drives glycocalyx, barrier and organ dysfunction early after polytrauma. J Crit Care. 2018;44:229–37.
- Denk S, Wiegner R, Hönes FM, Messerer DAC, Radermacher P, Weiss M, et al. Early detection of junctional adhesion molecule-1 (JAM-1) in the circulation after experimental and clinical polytrauma. Mediators Inflamm. 2015;2015: 463950.
- Deitch EA, Morrison J, Berg R, Specian RD. Effect of hemorrhagic shock on bacterial translocation, intestinal morphology, and intestinal permeability in conventional and antibiotic-decontaminated rats. Crit Care Med. 1990:18:529–36.
- 119. Moore FA, Moore EE, Poggetti RS, Read RA. Postinjury shock and early bacteremia. A lethal combination. Arch Surg. 1992;127:893–7.
- Wrba L, Ohmann JJ, Eisele P, Chakraborty S, Braumüller S, Braun CK, et al. Remote intestinal injury early after experimental polytrauma and hemorrhagic shock. Shock. 2019;52:e45-51.
- Haussner F, Maitz A, Rasche V, Hoffmann A, Braumüller S, Lupu L, et al. Intestinal damage and immune response after experimental blunt abdominal trauma. Shock. 2022;58:332–40.
- Vollrath JT, Klingebiel F, Bläsius F, Greven J, Bolierakis E, Nowak AJ, et al. I-FABP as a potential marker for intestinal barrier loss in porcine polytrauma. J Clin Med. 2022;11:4599.
- Weber B, Lackner I, Gebhard F, Miclau T, Kalbitz M. Trauma, a matter of the heart-molecular mechanism of post-traumatic cardiac dysfunction. Int J Mol Sci. 2021;22:737.
- 124. Braun CK, Kalbitz M, Halbgebauer R, Eisele P, Messerer DAC, Weckbach S, et al. Early structural changes of the heart after experimental polytrauma and hemorrhagic shock. PLoS ONE. 2017;12: e0187327.
- Relja B, Szermutzky M, Henrich D, Maier M, de Haan J-J, Lubbers T, et al. Intestinal-FABP and liver-FABP: novel markers for severe abdominal injury. Acad Emerg Med. 2010;17:729–35.
- Knöller E, Stenzel T, Broeskamp F, Hornung R, Scheuerle A, McCook O, et al. Effects of hyperoxia and mild therapeutic hypothermia during resuscitation from porcine hemorrhagic shock. Crit Care Med. 2016;44:e264-277.
- Hartmann C, Loconte M, Antonucci E, Holzhauser M, Hölle T, Katzsch D, et al. Effects of hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease. Crit Care Med. 2017;45:e1270–9.
- 128. Denoix N, McCook O, Scheuerle A, Kapapa T, Hoffmann A, Gündel H, et al. Brain histology and immunohistochemistry after resuscitation from hemorrhagic shock in swine with pre-existing atherosclerosis and sodium thiosulfate (Na2S2O3) treatment. Front Med. 2022;9: 925433.
- 129. Hartmann C, Gröger M, Noirhomme J-P, Scheuerle A, Möller P, Wachter U, et al. In-depth characterization of the effects of cigarette smoke exposure on the acute trauma response and hemorrhage in mice. Shock. 2019;51:68–77.
- Astapenko D, Zrzavecky M, Gorskaja D, Hyspler R, Ticha A, Radochova V, et al. Modulation of the capillary leakage by exogenous albumin in a rat model of endothelial glycocalyx damage. Clin Hemorheol Microcirc. 2024:86:509–17
- 131. van Leeuwen ALI, Borgdorff MP, Dekker NAM, van den Brom CE. Therapeutically targeting microvascular leakage in experimental hemorrhagic SHOCK: a systematic review and meta-analysis. Shock. 2021;56:890–900.

- 132. Hildebrand F, Radermacher P, Ruchholtz S, Huber-Lang M, Seekamp A, Flohé S, et al. Relevance of induced and accidental hypothermia after trauma-haemorrhage-what do we know from experimental models in pigs? Intensive Care Med Exp. 2014;2:16.
- van Griensven M, Ricklin D, Denk S, Halbgebauer R, Braun CK, Schultze A, et al. Protective effects of the complement inhibitor compstatin CP40 in hemorrhagic shock. Shock. 2019;51:78–87.
- Levy G, Fishman JE, Xu D, Dong W, Palange D, Vida G, et al. Vagal nerve stimulation modulates gut injury and lung permeability in traumahemorrhagic shock. J Trauma Acute Care Surg. 2012;73:338–42.
- 135. Trieu M, van Meurs M, van Leeuwen ALI, Van Slyke P, Hoang V, Geeraedts LMG, et al. Vasculotide, an angiopoietin-1 mimetic, restores microcirculatory perfusion and microvascular leakage and decreases fluid resuscitation requirements in hemorrhagic shock. Anesthesiology. 2018;128:361–74.
- Childs EW, Tharakan B, Hunter FA, Smythe WR. 17beta-estradiol mediated protection against vascular leak after hemorrhagic shock: role of estrogen receptors and apoptotic signaling. Shock. 2010;34:229–35.
- Lang E, Abdou H, Edwards J, Patel N, Morrison JJ. State-of-theart review: sex hormone therapy in trauma-hemorrhage. Shock. 2022;57:317–26.
- Alves NG, Trujillo AN, Breslin JW, Yuan SY. Sphingosine-1-phosphate reduces hemorrhagic shock and resuscitation-induced microvascular leakage by protecting endothelial mitochondrial integrity. Shock. 2019;52:423–33.
- Bini R, Chiara O, Cimbanassi S, Olivero G, Trombetta A, Cotogni P. Evaluation of capillary leakage after vasopressin resuscitation in a hemorrhagic shock model. World J Emerg Surg. 2018;13:11.
- 140. Maybauer MO, Maybauer DM, Enkhbaatar P, Laporte R, Wiśniewska H, Traber LD, et al. The selective vasopressin type 1a receptor agonist selepressin (FE 202158) blocks vascular leak in ovine severe sepsis*. Crit Care Med. 2014;42:e525–33.
- 141. Baucom MR, Wallen TE, Ammann AM, England LG, Schuster RM, Pritts TA, et al. Blood component resuscitative strategies to mitigate endotheliopathy in a murine hemorrhagic shock model. J Trauma Acute Care Surg. 2023;95:21–9.
- 142. Uzawa K, Ushiyama A, Mitsuda S, Ando T, Sawa M, Miyao H, et al. The protective effect of hydroxyethyl starch solution on the glycocalyx layer in an acute hemorrhage mouse model. J Anesth. 2020;34:36–46.
- 143. Prunet B, Cordier P-Y, Prat N, De Bourmont S, Couret D, Lambert D, et al. Short-term effects of low-volume resuscitation with hypertonic saline and hydroxyethylstarch in an experimental model of lung contusion and haemorrhagic shock. Anaesth Crit Care Pain Med. 2018;37:135–40.
- 144. Naumann DN, Beaven A, Dretzke J, Hutchings S, Midwinter MJ. Searching for the optimal fluid to restore microcirculatory flow dynamics after haemorrhagic shock: a systematic review of preclinical studies. Shock. 2016;46:609–22.
- Anand T, Reyes AA, Sjoquist MC, Magnotti L, Joseph B. Resuscitating the endothelial glycocalyx in trauma and hemorrhagic shock. Ann Surg Open. 2023;4: e298.
- Saravi B, Goebel U, Hassenzahl LO, Jung C, David S, Feldheiser A, et al. Capillary leak and endothelial permeability in critically ill patients: a current overview. Intensive Care Med Exp. 2023;11:96.
- Joffre J, Lloyd E, Wong E, Chung-Yeh C, Nguyen N, Xu F, et al. Catecholaminergic vasopressors reduce toll-like receptor agonist-induced microvascular endothelial cell permeability but not cytokine production. Crit Care Med. 2021;49:e315–26.
- 148. Ma X, Zhao Y, Daaka Y, Nie Z. Acute activation of β2-adrenergic receptor regulates focal adhesions through βArrestin2- and p115RhoGEF protein-mediated activation of RhoA. J Biol Chem. 2012;287:18925–36.
- 149. Rangarajan S, Enserink JM, Kuiperij HB, de Rooij J, Price LS, Schwede F, et al. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor. J Cell Biol. 2003;160:487–93.
- Perkins GD, McAuley DF, Thickett DR, Gao F. The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med. 2006;173:281–7.
- 151. Gao Smith F, Perkins GD, Gates S, Young D, McAuley DF, Tunnicliffe W, et al. Effect of intravenous β -2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet. 2012;379:229–35.

Joffre et al. Annals of Intensive Care (2025) 15:79 Page 13 of 13

- Permpikul C, Tongyoo S, Viarasilpa T, Trainarongsakul T, Chakorn T, Udompanturak S. Early use of norepinephrine in septic shock resuscitation (CENSER) a randomized trial. Am J Respir Crit Care Med. 2019:199-1097–105
- Lopez E, Fukuda S, Modis K, Fujiwara O, Enkhtaivan B, Trujillo-Abarca R, et al. Arginine vasopressin receptor 2 activation promotes microvascular permeability in sepsis. Pharmacol Res. 2021;163: 105272.
- Viñuela-Berni V, Gómez-González B, Quintanar-Stephano A. Blockade of arginine vasopressin receptors prevents blood-brain barrier breakdown in experimental autoimmune encephalomyelitis. Sci Rep. 2020:10:467.
- Williams B, Baker AQ, Gallacher B, Lodwick D. Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension. 1995;25:913–7.
- Bodor C, Nagy JP, Végh B, Németh A, Jenei A, MirzaHosseini S, et al. Angiotensin II increases the permeability and PV-1 expression of endothelial cells. Am J Physiol Cell Physiol. 2012;302:C267-276.
- Chen M, Chen C, Yuan X, Chen X, Zheng F, Shao L, et al. Angiotensin II
 aggravates lipopolysaccharide induced human pulmonary microvascular endothelial cells permeability in high glucose status. Endocr J.
 2018;65:717–25.
- 158. Victorino GP, Newton CR, Curran B. Effect of angiotensin II on microvascular permeability. J Surg Res. 2002;104:77–81.
- 159. Laterre P-F, Pickkers P, Marx G, Wittebole X, Meziani F, Dugernier T, et al. Safety and tolerability of non-neutralizing adrenomedullin antibody adrecizumab (HAM8101) in septic shock patients: the AdrenOSS-2 phase 2a biomarker-quided trial. Intensive Care Med. 2021;47:1284–94.
- Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krüll M, et al. Adrenomedullin reduces endothelial hyperpermeability. Circ Res. 2002;91:618–25.
- Nishio K, Akai Y, Murao Y, Doi N, Ueda S, Tabuse H, et al. Increased plasma concentrations of adrenomedullin correlate with relaxation of vascular tone in patients with septic shock. Crit Care Med. 1997;25:953–7.
- 162. Fung E, Fiscus RR. Adrenomedullin induces direct (endothelium-independent) vasorelaxations and cyclic adenosine monophosphate elevations that are synergistically enhanced by brain natriuretic peptide in isolated rings of rat thoracic aorta. J Cardiovasc Pharmacol. 2003;41:849–55.
- 163. Geven C, Peters E, Schroedter M, Struck J, Bergmann A, McCook O, et al. Effects of the humanized anti-adrenomedullin antibody adrecizumab (HAM8101) on vascular barrier function and survival in rodent models of systemic inflammation and sepsis. Shock. 2018;50:648–54.
- 164. Tolppanen H, Rivas-Lasarte M, Lassus J, Sans-Roselló J, Hartmann O, Lindholm M, et al. Adrenomedullin: a marker of impaired hemodynamics, organ dysfunction, and poor prognosis in cardiogenic shock. Ann Intensive Care. 2017;7:6.
- 165. Karakas M, Akin I, Burdelski C, Clemmensen P, Grahn H, Jarczak D, et al. Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): an investigator-initiated, randomised, doubleblinded, placebo-controlled, multicentre trial. Lancet Respir Med. 2022;10:247–54.
- Yakovlev S, Gao Y, Cao C, Chen L, Strickland DK, Zhang L, et al. Interaction of fibrin with VE-cadherin and anti-inflammatory effect of fibrinderived fragments. J Thromb Haemost. 2011;9:1847–55.
- Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the beta15-42 sequence of fibrin. J Biol Chem. 1998;273:30719–28.
- Petzelbauer P, Zacharowski PA, Miyazaki Y, Friedl P, Wickenhauser G, Castellino FJ, et al. The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury. Nat Med. 2005;11:298–304.
- 169. Atar D, Petzelbauer P, Schwitter J, Huber K, Rensing B, Kasprzak JD, et al. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. (Efficacy of FX06 in the prevention of myocardial reperfusion injury) trial. J Am Coll Cardiol. 2009;53:720–9.
- Jennewein C, Mehring M, Tran N, Paulus P, Ockelmann PA, Habeck K, et al. The fibrinopeptide bβ15-42 reduces inflammation in mice subjected to polymicrobial sepsis. Shock. 2012;38:275–80.

- 171. Roesner JP, Petzelbauer P, Koch A, Tran N, Iber T, Mutz C, et al. A double blind, single centre, sub-chronic reperfusion trial evaluating FX06 following haemorrhagic shock in pigs. Resuscitation. 2009;80:264–71.
- 172. Roesner JP, Petzelbauer P, Koch A, Tran N, Iber T, Vagts DA, et al. Bbeta15-42 (FX06) reduces pulmonary, myocardial, liver, and small intestine damage in a pig model of hemorrhagic shock and reperfusion. Crit Care Med. 2009;37:598–605.
- Guérin E, Belin L, Franchineau G, Le Guennec L, Hajage D, Diallo MH, et al. FX06 to rescue SARS-CoV-2-induced acute respiratory distress syndrome: a randomized clinical trial. Crit Care. 2023;27:331.
- 174. Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, Awan Z, et al. PCSK9 and inflammation: a review of experimental and clinical evidence. Eur Heart J Cardiovasc Pharmacother. 2019;5:237–45.
- Ding Z, Liu S, Wang X, Deng X, Fan Y, Sun C, et al. Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxid Redox Signal. 2015;22:760–71.
- Navarese EP, Podhajski P, Gurbel PA, Grzelakowska K, Ruscio E, Tantry U, et al. PCSK9 inhibition during the inflammatory stage of SARS-CoV-2 infection. J Am Coll Cardiol. 2023;81:224–34.
- Daly C, Wong V, Burova E, Wei Y, Zabski S, Griffiths J, et al. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev. 2004;18:1060–71.
- 178. Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8:471.
- 179. Orfanos SE, Kotanidou A, Glynos C, Athanasiou C, Tsigkos S, Dimopoulou I, et al. Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators. Crit Care Med. 2007;35:199–206.
- Fang Y, Li C, Shao R, Yu H, Zhang Q, Zhao L. Prognostic significance of the angiopoietin-2/angiopoietin-1 and angiopoietin-1/Tie-2 ratios for early sepsis in an emergency department. Crit Care. 2015;19:367.
- 181. Beurskens DM, Bol ME, Delhaas T, van de Poll MC, Reutelingsperger CP, Nicolaes GA, et al. Decreased endothelial glycocalyx thickness is an early predictor of mortality in sepsis. Anaesth Intensive Care. 2020;48:221–8.
- Kumpers P, Gueler F, David S, Slyke PV, Dumont DJ, Park J-K, et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care. 2011:15:R261.
- David S, Park J-K, van Meurs M, Zijlstra JG, Koenecke C, Schrimpf C, et al. Acute administration of recombinant angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis. Cytokine. 2011;55:251–9.
- Han S, Lee S-J, Kim KE, Lee HS, Oh N, Park I, et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med. 2016;8:335ra55.
- McMullan RR, McAuley DF, O'Kane CM, Silversides JA. Vascular leak in sepsis: physiological basis and potential therapeutic advances. Crit Care. 2024;28:97.
- Seymour CW, Kennedy JN, Wang S, Chang C-CH, Elliott CF, Xu Z, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321:2003–17.
- van Amstel RBE, Kennedy JN, Scicluna BP, Bos LDJ, Peters-Sengers H, Butler JM, et al. Uncovering heterogeneity in sepsis: a comparative analysis of subphenotypes. Intensive Care Med. 2023;49:1360–9.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.