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Abstract 

Vascular leakage has emerged as a major factor during circulatory failure. Triggered by the inflammatory process fol-
lowing the recognition of both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs), it worsens circulatory failure through the hypovolemia it induces. It may also crucially participate 
in secondary microcirculation disorders and organ dysfunctions, due to interstitial edema resulting from extravas-
cular fluid accumulation. Accordingly, fluid balance, i.e., the difference between fluid intake and output, is directly 
related with outcomes during the different types of shock. Moreover, controlling vascular leakage had beneficial 
effects in various animal models of circulatory failure. However, despite promising preclinical findings, no routine drug 
is currently available to control vascular leakage in humans. This review depicts the mechanisms involved in the main-
tenance of a quiescent endothelium and those implicated in the destabilization of its barrier function in various 
forms of shocks. It further describes available tools to explore vascular leakage and the most advanced treatments 
under development.
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Introduction: vascular leakage, a key player 
during circulatory failure
The endothelium, which covers a surface area of more 
than 1000 m2 in the human body, has a key role in regu-
lating leucocyte trafficking and tissue homeostasis [1]. 
While a localized increase in permeability is essential for 
the healing process following tissue injury, the systemic 
spread of hyperpermeability may become highly del-
eterious. This "vascular leakage" (or "capillary leakage") 
is induced by systemic inflammation associated with 

circulatory shock and represents an important feature of 
circulatory failure. Vascular leakage worsens circulatory 
failure by inducing hypovolemia and may promote organ 
dysfunction through the interstitial edema it induces 
[2–4]. Various experimental studies demonstrated that 
even small increases in the water content of organs may 
crucially affect their function [5]. Vascular leakage also 
decreases hydrostatic and osmotic pressures in small 
vessels compared to the adjacent interstitium, which is 
thought to induce their occlusion and contribute to the 
microcirculation disorders observed during shock states 
[6]. Although it has been initially described during sepsis, 
inflammation-induced vascular leakage is also a hallmark 
of "sterile" forms of shock, e.g., cardiogenic shock [7, 8], 
post-resuscitation syndrome [9, 10], and resuscitation 
from hemorrhagic shock [11]. Accordingly, fluid balance 
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is an independent predictor of mortality during septic or 
cardiogenic shock [8, 12–14]. In turn, controlling capil-
lary leakage was beneficial during experimental circula-
tory failure [15–17]. However, the pathophysiology of 
vascular leakage remains poorly described in humans, 
and no routine therapeutic is currently available to con-
trol it [4].

Many techniques have been developed to quantify the 
degree of leakage in animal models. The organ total/dry 
weight ratio (before and after dehydration) allows for a 
rough assessment of fluid accumulation over time [18]. 
Other authors utilized the extravasation of various dyes 
injected intravenously, quantifying the leakage through 
histology or measuring their elution from organs. These 
dyes enable a more precise quantification of the degree 
of leakage within shorter time windows, the most com-
monly used ones being Evans blue [19], fluorescent dex-
trans, and microspheres [20] (Fig. 1).

Only limited tools are available in humans. Transpul-
monary thermodilution is a routinely available method. 
Still, it only explores the leakage from the perfused 
pulmonary vascular bed based on the extravascular 
lung water content and the pulmonary vascular per-
meability index [21–23]. Other methods of interest 
use indocyanine green, which rapidly binds to circu-
lating proteins when injected intravenously. However, 
as multiple factors affect its clearance (e.g., vascular 
permeability, cardiac output, and liver function), its 
plasma concentration can only reliably estimate plasma 

volume [24–26]. Indexing plasma volume evaluated by 
indocyanine green on the initial distribution volume of 
glucose (after a simultaneous injection of glucose, dis-
tributing rapidly in the extracellular space), may allow 
to more specifically address vascular permeability to 
proteins [24, 25]. However, this technique remains 
technically demanding and requires further validation. 
Bioelectrical impedance, which measures the water 
content between two electrodes, also yielded promis-
ing preliminary results [26]. Nevertheless, fluid bal-
ance remains the predominant marker of leakage in the 
clinical setting, although it is influenced by several con-
founding factors, e.g., local fluid loading policies, the 
individual patient’s proteinemia, vasoplegia, and renal 
function [10, 14–16].

Pathophysiology of vascular leakage during sepsis
Endothelial cell quiescence and barrier function
The barrier function of the quiescent endothelium 
allows a tight regulation of tissue homeostasis. Main-
tenance of the endothelium in a quiescent state is an 
active process involving a combination of many sign-
aling pathways (Fig.  2) [27]. Laterally, endothelial 
cells (EC) interact strongly with adjacent EC via inter-
endothelial junctions [28], which regulate endothe-
lium integrity and paracellular trafficking of fluids and 
inflammatory cells [29, 30]. Three types of junctions are 
involved in EC-EC adhesion:

Fig. 1  A Representative heart cross sections from mice injected i.v. with fluorescent 70-kDa dextran (green) at the time of resuscitation (Low-Flow 
= 0 min) and harvested at Low-Flow min 4, in a model of resuscitated cardiac arrest, showing a massive extravasation of the dye. B sham animals 
(without cardiac arrest) in the same model. Vessels were counter-stained with fluorescent isolectin (red). Scale bar = 25 µm
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–	 Gap junctions, which rely on proteins from the con-
nexin family, serve as key regulators of small mole-
cules trafficking across the endothelium [31].

–	 Tight junctions are transmembrane proteins that 
interact with adjacent endothelial cells [32]. They are 
composed of members of claudin, occludin, junction-
associated molecule (ESAM) and junctional adhesion 
molecules (JAMs), which bind to actin cytoskeleton 
through zona occludens 1 protein (ZO-1), cingulin, 
and paracingulin.

–	 Adherens junctions involve homophilic interactions 
of vascular endothelial (VE)-cadherin [33, 34].

VE-cadherin is a crucial regulator of paracellular per-
meability to fluids, which allows the trafficking of small 
molecules (< 3.6 μm, < 40 kDa) at basal state. Accord-
ingly, an anti-VE-cadherin antibody induced major vas-
cular leakage in mice in vivo [35].

Signals from the basement membrane also contribute 
to the maintenance of the quiescent state. In particular, 
interactions between integrins and extracellular matrix 
components activate downstream intracellular pathways 

responsible for stabilizing the endothelial barrier, such 
as the PI3K/AKT pathway [36]. Matrikines (i.e., growth 
factors embedded in the extracellular matrix) and matri-
cellular proteins also contribute to signaling through a 
quiescent state. Co-stimulation of vascular endothelial 
growth factor-A (VEGF-A) and fibroblast growth fac-
tors (FGF), particularly, is a strong signal for survival and 
maintenance of a quiescent phenotype through ERK1/2 
signaling [27, 37].

The glycocalyx has also been referred to assume a sig-
nificant role for maintaining endothelial barrier integ-
rity. Composed of a complex network of glycoproteins 
and membrane-bound proteoglycans, it acts as a protec-
tive “jelly-like” layer coating the surface of vascular EC 
(Fig. 2). Maintaining proteins at the center of the vessel, 
it creates an osmotic gradient preventing water from 
leaking through the endothelial barrier. In addition, the 
glycocalyx also has essential signaling functions, particu-
larly concerning flow sensing and its downstream mech-
ano-transduction [38]. Glycocalyx components such as 
Syndecan-4 associating with β1 integrin [36], function as 
receptors for fibroblast growth factors (FGFs), vascular 

Fig. 2  Schematic representation of mechanisms implicated in endothelial barrier function and vascular hyperpermeability during circulatory failure
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endothelial growth factors (VEGFs), and platelet-derived 
growth factors (PDGFs) [39], to enhance EC barrier 
function.

Finally, shear stress is an important signal that pro-
motes vascular integrity and the quiescence of EC [40]. 
The expression of the Krüppel-like family of transcription 
factors KLF2/4 is induced by laminar shear stress and 
maintains a quiescent endothelium by downregulating 
inflammation and inhibiting the pro-coagulant activity 
of EC. This consists in decreasing the expression of the 
surface tissue factor and PAI-1, and increasing throm-
bomodulin expression [37, 41]. Platelet endothelial cell 
adhesion molecule-1 (PECAM-1), VE-cadherin, and 
VEGF receptor-2 (VEGFR2) also form an essential mech-
anosensory complex mediating endothelial cell response 
to shear stress [27, 42, 43]. Circulating factors are also 
involved in maintaining a quiescent phenotype. In par-
ticular, Angiopoietin-1, secreted by adjacent mural cells, 
signals through its endothelial receptor Tie2 and acti-
vates the PI3K/AKT pathway [44].

Microvascular endothelial activation and sepsis‑induced 
capillary leak
In acute inflammation, both pathogen-associated molec-
ular patterns (PAMPs) and damage-associated molecu-
lar patterns (DAMPs) activate multiple redundant and 
pleiotropic pathways in microvascular endothelial cells 
[6]. This initiates a shift from a homeostatic phenotype 
characterized by hyperselective and regulated perme-
ability to an activated phenotype characterized by hyper-
permeability [45, 46]. Several mechanisms contribute to 
inflammation-induced permeability: destabilization of 
adherens and tight junctions, glycocalyx breakdown, oxi-
dative stress, and cell death (Fig. 2).

The integrity of adherens junctions is modulated by 
tyrosine phosphorylation of its components, particularly 
VE-cadherin [47]. VE-cadherin is phosphorylated by 
stimuli inducing vascular leakage, mostly depending on 
Src and RhoA kinase activity, leading to its endocytosis 
and adherens junction destabilization. Phosphorylated 
RhoA and Rock also cause the formation of actin stress 
fibers, generating forces at the lateral cellular wall, which, 
in turn, widens the intercellular space and participates in 
junction disassembly and increased permeability [30, 48].

Consequently, various mediators such as Toll-Like 
Receptor (TLR) agonists, interleukin-6 (IL-6), throm-
bin, or VEGF may increase VE-cadherin phosphoryla-
tion, leading to its endocytosis in clathrin-coated vesicles 
[49]. For example, VEGF initiates a signaling cascade 
involving Src kinase, Vav2, and Rac, which triggers the 
serine phosphorylation of VE-cadherin. This results 
in the recruitment of β-arrestin2 and culminates in the 
endocytosis of VE-cadherin [50]. Inhibiting this VEGF 

signaling pathway is one of the mechanisms by which 
the vascular protective agent angiopoietin-1 (Ang1) pre-
vents VE-cadherin internalization and vascular leakage 
[51]. Additionally, cytokine-induced phosphorylation of 
the VE-cadherin cytoplasmic domain has been reported 
to trigger the cleavage of its extracellular domain [52], 
producing a soluble form detectable in the plasma as 
a biomarker of endothelial activation/dysfunction [53, 
54]. Recently, Yang et  al. have demonstrated that, dur-
ing sepsis, circulating lactate activates the calpain1/2 in 
an ERK-dependent pathway, provoking the VE-cadherin 
proteolytic cleavage and its endocytosis in EC. This study 
also demonstrated that both genetically or pharmacologi-
cally inhibiting lactate signaling alleviated sepsis-asso-
ciated capillary leak and improved outcomes in murine 
polymicrobial sepsis, suggesting a direct role of lactate 
in promoting endothelial permeability [55]. Similar to 
adherens junctions, several studies have reported the 
disruption of endothelial tight junctions in sepsis, reduc-
ing the protein levels of occludin and zonula occludens: 
for instance, tumor necrosis factor-alpha (TNF-α) was 
shown to disrupt claudin-5 at endothelial cell–cell junc-
tions through NF-κB pathway activation [56].

In addition to cell–cell junctions, glycocalyx degrada-
tion can promote microvascular permeability and a local 
increase in oxidative stress [57]. Human studies provided 
evidence that sepsis and other acute inflammatory ill-
nesses are associated with shedding of the glycocalyx, 
as measured by syndecan-1, hyaluronan, or glycosami-
noglycans [58–61]. Their circulating levels are related 
to capillary leakage and poor outcome [62–65]. In a 
lipopolysaccharide (LPS) model of endotoxemia in mice, 
Kataoka et  al. demonstrated that glycocalyx destruction 
increased microvascular macromolecule permeability 
and leukocyte adhesion [66]. Moreover, the intact gly-
cocalyx serves as a sanctuary for two major antioxidant 
enzymes: superoxide dismutase (SOD) [67] and activated 
xanthine oxidase [68]. Therefore, glycocalyx degradation 
may cause a shift towards a pro-oxidant state. In turn, 
reactive oxygen species (ROS) can amplify glycocalyx 
degradation via proteolytic cleavage of syndecan-1 and 
sulfated glycosaminoglycan, ultimately further aggravat-
ing endothelial permeability [69, 70].

Finally, redox imbalance can induce EC death through 
apoptosis or necrosis. ROS (e.g., H2O2, OH•¯) and reac-
tive nitrogen species (e.g., ONOO−) trigger cell death 
programs both via the mitochondrial and extrinsic (death 
receptor and endoplasmic reticulum) pathways [71, 72]. 
The degree of redox imbalance determines whether 
EC undergo apoptosis or necroptosis, both of which 
can significantly enhance endothelial dysfunction [73]. 
Endothelial cell death involves the loss of structural and 
membrane properties, thus exacerbating permeability, 



Page 5 of 13Joffre et al. Annals of Intensive Care           (2025) 15:79 	

capillary protein and fluid leakage, and, consequently, 
organ injury. In a model of peritonitis in mice, Gill et al. 
identified apoptotic microvascular endothelial cells in the 
lung and reported that pretreatment with a pan-caspase 
inhibitor attenuated capillary leakage [74]. This sug-
gests that endothelial cell apoptosis may also mediate 
lung vascular hyperpermeability. Finally, necrotic cells 
release large amounts of DAMPs and phosphatidylserine 
(PS)-positive microparticles, amplifying local inflamma-
tion and enhancing capillary leakage [75]. Beyond apop-
tosis and necrosis, other forms of endothelial cell death 
have been shown to be involved in sepsis. “Pyroptosis” 
is a programmed form of necrosis activated by intracel-
lular sensors of microbial products, which, in turn, trig-
ger the formation of an intracellular complex known as 
the “inflammasome”. This process amplifies the release 
of pro-inflammatory cytokines and causes damage to the 
endothelium. Caspase-1, a key effector of pyroptosis, has 
been shown to contribute to sepsis lethality [76]. More 
recently, PANoptosis has been described as a form of cell 
death that integrates features of pyroptosis, apoptosis, 
and necroptosis, with emerging evidence supporting its 
role in sepsis [77, 78]. However, the relative contribution 
of these forms of cell death to vascular leakage remains to 
be determined.

It could be argued that controlling vascular leakage 
may impair the immune response to pathogens dur-
ing sepsis. However, numerous studies using intravital 
microscopy as well as cell and molecular biology have 
challenged the notion that vascular leakage is necessary 
for leukocyte trafficking through the endothelial barrier. 
In fact, an adequate and competent immune response 
involves tight regulation of leukocyte trafficking, which 
relies on a controlled “unzipping” of endothelial cell–cell 
junctions [79, 80]. Accordingly, several agents have been 
shown to reduce vascular leakage in animal models of 
sepsis without impairing leukocyte recruitment or path-
ogen clearance [79]. This “uncoupling” of fluid and leu-
kocyte extravasation further reinforces the rationale for 
controlling trans-endothelial leakage during sepsis.

Vascular leakage in other forms of circulatory 
failure
Post‑resuscitation syndrome
Vascular leakage is also a hallmark of the post-resusci-
tation syndrome [81], which shares many pathophysi-
ological features with sepsis [9]. Ischemia–reperfusion 
(I/R) injury after cardiac arrest triggers an intense 
inflammatory reaction, with levels of circulating 
cytokines comparable with sepsis [82, 83], and high 
amounts of fluids needed to correct hypovolemia [9, 
10, 84]. The resulting interstitial edema is thought to 
assume significant importance for organ function: an 

only 4% increase in myocardial water content was suf-
ficient to reduce cardiac function by more than 50% in 
animals [5, 85]. Myocardial edema, which occurs within 
minutes, might, therefore, contribute to the transient 
myocardial dysfunction observed after cardiac arrest 
[84]. Likewise, both in animal and human studies, post-
cardiac arrest neurological deficit was directly related 
to cerebral edema [86, 87]. Targeting vascular leakage, 
hence, is a promising therapeutic approach after car-
diac arrest.

During ischemia, the inflammatory process is induced 
by the release of DAMPS, mainly consisting of damaged 
cell debris released after necrosis (membrane, DNA, his-
tone fragments…) [88]. DAMPs are recognized as dan-
ger signals by Pattern-Recognition Receptors (PRRs) 
expressed by resident inflammatory cells (macrophages 
and mastocytes), initiating an inflammatory response 
[89] and activating EC by producing pro-inflammatory 
cytokines [89–91]. Among these DAMPs, High-Mobility 
Group Box 1 (HMGB1) and S100 A8/A9 are pivotal dur-
ing ischemia [92, 93], by activating the nuclear transcrip-
tion factor NF-κB that signals through toll-like receptors 
2 and 4 (TLR2/4) and receptors for advanced glyca-
tion end-products (RAGE), expressed by inflammatory 
cells. EC activation is responsible for the recruitment of 
inflammatory cells, which further enhances the inflam-
matory response to ischemia through ROS generation 
[89, 94]. The resulting inflammation strongly impairs the 
stability of inter-endothelial cell junctions. Upon acti-
vation, EC release the contents of Weibel-Palade bod-
ies into the circulation, which contain a wide range of 
molecules responsible for endothelium activation and 
destabilization. Among those, Angiopoietin-2 is a potent 
inducer of vascular permeability as a competitor agonist 
of Angiopoietin-1 on the Tie-2 receptor [95]. Von Wille-
brand Factor, in combination with the release of tissue 
factor (TF) and plasminogen activator inhibitor-1 (PAI-1) 
by activated EC, induces a procoagulant endothelial state 
[43, 91] and thrombin generation, which contributes to 
vascular leakage from ischemic vessels [30]. ROS, along 
with many substances released by inflammatory cells 
(histamine, bradykinin, nitric oxide, leukotrienes, throm-
boxanes and prostaglandins), further increase vascular 
hyperpermeability [30, 48, 96, 97]. Finally, as for sepsis, 
the glycocalyx undergoes significant degradations during 
ischemia, contributing to capillary leakage [98].

In conclusion, while vascular leakage exhibits com-
mon pathophysiological features both during sepsis and 
the post-resuscitation syndrome, the precise common 
mechanisms, however, and any differences remain to 
be better described. Likewise, the contribution of tissue 
ischemia to sepsis-induced vascular leakage must be bet-
ter characterized.
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Cardiogenic shock
Severe cardiogenic shock is also responsible for ischemia-
induced tissue lesions, thus triggering systemic hyper-
inflammation. This leads to the induction of a complex 
hemodynamic profile, combining features of both low 
cardiac output and inflammation-induced vasoplegia, 
and vascular leakage [99], the degree of which is directly 
related to patient severity [8]. Accordingly, the angio-1/2 
ratio correlates with mortality [7]. Nevertheless, control-
ling vascular leakage during cardiogenic shock remains 
an unresolved issue.

Hemorrhagic shock
Similar to sepsis, trauma and hemorrhage lead to sys-
temic hyper-inflammation triggered by direct tissue dam-
age per se [100, 101] and shock-induced tissue hypoxia 
[102]. Therefore, “repayment of the O2 debt” [103] to 
restore/maintain tissue O2 supply is a cornerstone of the 
management. However, in analogy to the post-resuscita-
tion syndrome, restoring tissue perfusion induces an I/R-
type of injury [104]. The type and amount of aggressive 
fluid resuscitation [105, 106] and catecholamine infu-
sion [107] to achieve adequate perfusion, may further 
aggravate this effect. Hence, diffuse capillary leakage was 
already described in the context of trauma-and-hem-
orrhage in the 1970s. However, despite progress in the 
understanding of its pathophysiology, its precise mecha-
nisms remain unclear [108], and, in particular, practical 
measures for its prevention and/or treatment are still 
lacking. The local trauma-induced release of cytokines, 
complement, arachidonic acid derivatives, and ROS 
primarily induces repair processes. However, an over-
whelming injury may cause systemic spillover of these 
mediators, thereby initiating the above-mentioned sys-
temic hyper-inflammation. In addition, whereas a single, 
moderate, and/or localized trauma does not per se cause 
this systemic response, any additional, even delayed, sec-
ond stress may do so [109]. This is referred to as the"two-
hit"theory [109, 110], emphasizing the role of impaired 
handling of a second stress, e.g., follow-up surgery, sec-
ondary infection, and/or transfusion of blood products.

Evidence of trauma-related vascular leakage has been 
reported for virtually all organs, i.e., the lung [111–117], 
the gut as documented by translocation of endotoxin 
and/or live bacteria [116, 118–122], the heart [123, 124], 
the liver [115, 125], the kidney [114, 115, 126, 127] and 
the brain [128]. Not only does trauma aggravate vas-
cular barrier dysfunction resulting from hemorrhagic 
shock [129], but also conversely hemorrhage aggravates 
any trauma-related barrier destabilization [115, 116]. In 
this context, hemorrhage increased syndecan-1 levels 
beyond those induced by trauma alone, suggesting that 
the endothelial glycocalyx may assume importance for 

hemorrhage-related vascular leakage. In fact, exogenous 
albumin attenuated albumin leakage into the extravascu-
lar space, indicating the role of the endothelial glycocalyx 
for intravascular maintenance of plasma proteins [130].

In experimental trauma-and-hemorrhage and subse-
quent (fluid) resuscitation, various therapeutic strategies 
have been tested to reduce microvascular leakage (for 
a systematic review see [131]): these approaches com-
prise modulation of energy metabolism (e.g. hypother-
mia [126, 132]), targeting inflammatory pathways (e.g., 
via complement blockade [133] or vagus nerve stimula-
tion [134]), the angiopoietin/Tie-2 system (e.g., vascu-
lotide [135]), administration of sex hormones [136, 137] 
or sphingosine [138], the use of hyperoxia (i.e., increased 
inspired O2 fractions [126, 127]), vasopressin [139] or its 
analogues [140] rather than catecholamines to counteract 
hypotension, and targeted choice of intravascular fluid 
resuscitation (e.g., the use of blood products [141] and/or 
synthetic colloids rather than crystalloids [142], or hyper-
tonic saline [143]; for detailed review see [144, 145]).

Clearly, the existing data remains equivocal, and it 
remains an open question whether any promising experi-
mental finding can be confirmed in clinically relevant 
resuscitated models of trauma and hemorrhage. So far, 
however, none of these therapeutic strategies has found 
its way into clinical practice.

More advanced therapeutic strategies 
under investigation to control vascular leakage 
during circulatory failure
A wide range of potential treatments to prevent or reduce 
vascular leakage during the various forms of circulatory 
failure have been or are currently being investigated in 
pre-clinical studies [146]. Some are more advanced and 
have translated to clinical investigations.

Vasopressors and endothelial permeability
Vasopressors are pivotal during the early management of 
shock to restore mean arterial pressure and sustain organ 
perfusion. Nevertheless, their microvascular effects have 
often been overlooked, particularly regarding endothe-
lial permeability. In an era marked by increasing inter-
est in non-catecholaminergic agents like vasopressin or 
angiotensin-II, the examination of microvascular effects 
of both catecholaminergic and non-catecholaminergic 
agents becomes imperative.

In ex vivo experiments utilizing human lung microvas-
cular endothelial cells (L-HMVEC), Joffre et al. reported 
that epinephrine and norepinephrine significantly reduce 
Toll-Like Receptor (TLR) agonist and proinflamma-
tory cytokine-induced endothelial permeability [147]. 
This effect was demonstrated to be mediated through 
both ß1 and ß2-adrenergic receptors. Mechanistically, 



Page 7 of 13Joffre et al. Annals of Intensive Care           (2025) 15:79 	

ß2-adrenergic receptor activation reduces LPS-induced 
permeability through cytoskeletal rearrangement, con-
tributing to the maintenance of impermeability under 
inflammatory conditions [148, 149]. Clinical trials also 
support these experimental findings; in the BALTI-1 
study on ARDS patients, the salbutamol group exhibited 
significantly lower lung water at day 7 compared to the 
control group [150], suggesting that ß-adrenergic stimu-
lation may attenuate capillary leakage. This effect, how-
ever, did not translate into increased survival in the larger 
confirmatory randomized trial BALTI-2 [151]. The CEN-
SER study on septic shock patients receiving early nor-
epinephrine indicated a lower occurrence of pulmonary 
edema (14% vs. 28%; p = 0.004) despite similar fluid vol-
umes, suggesting that early catecholamine administration 
may limit sepsis-induced capillary leak syndrome [152].

Regarding vasopressin, in  vivo experiments of pneu-
monia-induced sepsis in sheep demonstrated that the 
V2-receptor antagonist tolvaptan significantly attenuated 
fluid retention and reduced lung water content [153]. 
However, in rats undergoing hemorrhagic shock, vaso-
pressin worsened pulmonary and renal capillary leakage 
[139]. Vasopressin receptor blockade reversed blood–
brain barrier hyperpermeability during experimental 
autoimmune encephalomyelitis in rats, suggesting that 
vasopressin might be deleterious to blood–brain barrier 
permeability [154]. Therefore, arginine vasopressin could 
potentially exacerbate capillary leak.

Data regarding angiotensin-2 are limited. Ex vivo stud-
ies using transcriptomics reported that angiotensin-2 
induced a concentration and time-dependent increase 
in VEGF mRNA expression by human vascular smooth 
muscle cells [155]. In human umbilical vein endothelial 
cells (HUVEC), angiotensin II was reported to increase 
permeability and plasmalemmal vesicle-1 (PV-1) expres-
sion, a protein associated with microvascular leakage 
[156]. Similarly, under high glucose concentrations, 
angiotensin II also aggravated LPS-induced permeabil-
ity in L-HMVEC [157]. Nevertheless, using experimental 
transendothelial hydraulic permeability measurements, 
Victortino et  al. observed that while microvascular per-
meability is increased by angiotensin-2 under basal 
conditions, it might be reduced in ATP-activated 
endothelium [158]. Overall, data on microvascular func-
tion and capillary leak are crucially needed from clini-
cal trials exploring the effects of non-catecholaminergic 
vasopressors.

Adrecizumab
Adrenomedullin is a protein belonging to the calci-
tonin gene-related family that has dual vascular effects. 
It reduces inflammation-induced endothelial hyper-
permeability and promotes smooth muscle cell-related 

vasorelaxation [159–162]. Adrecizumab, a humanized 
monoclonal non-neutralizing anti-adrenomedullin anti-
body (clone HAM8101), increased adrenomedullin bio-
availability in the plasma by preventing adrenomedullin 
degradation and inhibiting its translation from the 
plasma to the interstitium. Therefore, it was tested dur-
ing sepsis to attenuate both vascular leakage and vaso-
plegia [159]. It efficiently reduced vascular leakage and 
improved survival in pre-clinical models of sepsis [163], 
and, consequently, was evaluated in a phase 2a double-
blind randomized trial, the AdrenOSS-2 biomarker-
guided trial [159]. 301 septic shock patients with plasma 
bio-adrenomedullin concentrations > 70 pg/ml less than 
12 h after vasopressors initiation were randomized to 
receive a single dose of adrecizumab or its placebo. With 
comparable adverse events between groups, the trial 
demonstrated the safety and tolerability of the drug. 
Although the trial was not designed for efficacy, patients 
receiving adrecizumab exhibited a more pronounced 
reduction in their SOFA score at day 7 and a comparable 
sepsis-support index (days alive without hemodynamic, 
respiratory or renal support) at day 30, while mortality at 
day 28 did not differ between groups (24 vs. 28% in the 
control group, p = 0.44). Further research is ongoing for 
the development of this drug during sepsis [159].

Given the deleterious role of vascular hyperpermeabilty 
and an association between circulating adrenomedullin 
levels and patient outcomes during cardiogenic shock, 
adrecizumab was also evaluated during this condition 
[164]. In the ACCOST-HH trial, a double-blind mul-
ticenter randomized trial, it did not provide any advan-
tage on the primary endpoint of the number of days alive 
without cardiovascular organ support at day 30, nor on 
mortality (40 vs 40%, p = 0.98). Serious adverse events, 
however, were comparable between groups, further sup-
porting the good tolerance of the drug [165].

FX06
FX06 is a drug containing the fibrin-derived peptide 
Bβ15–42, which stabilizes VE-cadherin-dependent inter-
endothelial cell junctions [20, 166, 167]. It was first devel-
oped in murine myocardial I/R injury, reducing vascular 
leakage and tissue damage [168]. In a phase II trial con-
ducted on 234 patients suffering from acute coronary 
syndrome, patients treated with FX06 exhibited a 58% 
decrease in their early necrotic core zone, although the 
primary endpoint of total infarct size at day 5 remained 
unaffected [169]. Importantly, adverse events were com-
parable between groups, indicating a high safety profile 
for the drug.

FX06 also reduced vascular leakage in several pre-clin-
ical models of circulatory failure. In a pig model of car-
diac arrest, i.v. FX06 decreased the need for fluid intake 
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and improved the neurocognitive recovery of the animals 
[17]. Moreover, it reduced circulating levels of cytokines 
IL-1β, IL-6, TNF-α, IL-10, and MCP-1 in a mouse model 
of cecal-ligation-and-puncture-induced sepsis. It also 
reduced extravasation of i.v. injected fluorospheres and 
Evans blue in a mouse model of endotoxemia [20, 170]. 
Finally, during resuscitation from hemorrhagic shock in 
swine, FX06 attenuated markers of organ damage, and 
reduced circulating endotoxemia and inflammation [171, 
172]. Nevertheless, FX06 yielded disappointing results 
in a phase II double-blind randomized study evaluating 
its efficacy during SARS-CoV-2-induced acute respira-
tory distress syndrome. In particular, it had no detectable 
effect on pulmonary edema [173].

Research is, however, currently ongoing in the setting 
of circulatory failure, particularly post-cardiac arrest 
shock, which would allow an early administration when 
compared to ARDS.

PCSK9 inhibitors
Proprotein Convertase Subtilisin/Kexin-9 (PCSK9) is 
a serine protease implicated in the homeostasis of low-
density lipoprotein (LDL) receptors, key regulators of 
the inflammasome complex. During sepsis, PCSK9 is 
involved in its activation and the release of pro-inflam-
matory cytokines [174]. It has a more specific role on 
endothelial cell dysfunction, promoting ROS generation 
from the endothelium under inflammatory and abnormal 
shear stress conditions [175]. In a phase 2, double-blind 
randomized and controlled trial, the PCSK9 inhibitor 
evolocumab significantly decreased the intubation rate 
of patients with Sars-CoV-2-induced ARDS [176]. Stud-
ies are currently ongoing to characterize its role during 
human sepsis.

Modulators of angiopoietin/tie‑2 pathway
Tie-2, a tyrosine kinase receptor expressed by endothe-
lial cells, is a crucial regulator of endothelial permeabil-
ity. Its main agonist, Angiopoietin-1 (Ang-1), promotes 
the vascular barrier function through cell–cell junction 
stabilization and strengthening of actin cytoskeleton, via 
activation of the Akt pathway [177]. In contrast, angi-
opoietin-2 (Ang-2), competing with Ang-1 for Tie-2 liga-
tion, acts as a strong destabilizing agent of the endothelial 
barrier. Contained in Weibel-Palade bodies of endothe-
lial cells, it is released at very early stages of endothelial 
cell activation [178]. Accordingly, Ang-2 levels directly 
related to pro-inflammatory cytokines concentra-
tions during sepsis, and the Ang-1/2 ratio correlates 
with disease severity and outcome [179–181]. Hence, 
manipulating the angiopoietin/Tie-2 pathway thus also 
represents an attractive strategy to control vascular leak-
age during sepsis. Several drugs have been evaluated 

so far. Vasculotide, a synthetic Tie-2 agonist, has been 
shown to reduce cytokine response and, ultimately, dose-
dependently improve survival in a fluid-resuscitated 
murine model of cecal ligation and puncture-induced 
polymicrobial sepsis [182]. Recombinant Ang-1 reduced 
vascular leakage and neutrophil infiltration in the lungs 
in a similar murine model of polymicrobial, abdominal 
sepsis [183]. Finally, an anti-Ang-2 antibody with Tie-2 
agonist properties also demonstrated protective effects 
on the vasculature and improved survival in three other 
different murine models of sepsis [184]. A phase 2a study 
is currently recruiting to evaluate the safety and tolerabil-
ity of the synthetic Tie-2 agonist AV-001 in humans with 
pneumonia (NCT05123755).

Other strategies
Many other strategies aiming at correcting dysregulated 
inflammation are currently investigated during the dif-
ferent forms of circulatory failure (mostly during sepsis), 
which may indirectly help controlling vascular leakage 
[146, 185]. Moreover, better understanding of patients 
heterogeneity regarding inflammatory phenotypes may 
help reappraising treatments that failed demonstrating 
their efficacy in humans, despite encouraging results in 
pre-clinical studies [186, 187].

Conclusion
Inflammation-induced vascular leakage is a major con-
tributor to organ dysfunction during circulatory failure 
and is thought to crucially impact patients’ outcome. 
Despite promising pre-clinical findings, none of the 
tested drugs translated to routine clinical care. Vascu-
lar hyperpermeability during shock, thus, remains an 
area of research to better characterize its mechanisms in 
humans and consecutively develop new treatments. Bet-
ter characterization of the individual patient’s phenotype 
associated with vascular leakage is also mandatory to fur-
ther evaluate these new treatments.
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