

SMART CONTRACT SECURITY AUDIT OF

JACKPOT

 SOCIAL @interfinetwork WEB interfi.network

PAGE 2 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Audit Introduction
Auditing Firm InterFi Network

Audit Architecture InterFi Echelon Auditing Standard

Language Solidity

Client Firm Jackpot

Website https://jackpot-crypto.net/

Telegram https://t.me/jackpot_gr/

Twitter https://twitter.com/token_jackpot/

Report Date September 03, 2022

About Jackpot

The standard in other tokens nowadays is whoever bought first during the launch will be the big

winner while the last buyers taking the losses. Jackpot is a brand-new smart protocol giving a

chance to the last buyers to win the big prize anytime!

 SOCIAL @interfinetwork WEB interfi.network

PAGE 3 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Audit Summary
InterFi team has performed a line-by-line manual analysis and automated review of smart

contracts. Smart contracts were analyzed mainly for common contract vulnerabilities, exploits, and

manipulation hacks. According to the audit:

v Jackpot’s solidity source code has LOW RISK SEVERITY

v Jackpot’s smart contract has an ACTIVE OWNERSHIP

v Jackpot’s centralization risk correlated to the active owner is HIGH

v Important contract privileges – AIRDROP, ENFORCE MIN BUY, ANTISNIPE, SET AMM, UPDATE

TAXES, UPDATE JACKPOT PERCENT, EMERGENCY WITHDRAW, UPDATE MINIMUM HOLDINGS,

UPDATE BUY AMOUNT

v High-risk contract privileges – BLACKLIST

Be aware that smart contracts deployed on the blockchain aren’t resistant to internal exploit,

external vulnerability, or hack. For a detailed understanding of risk severity, source code

vulnerability, exploitability, and audit disclaimer, kindly refer to the audit.

🚨 Contract address: 0x7C1376481417dcE6e9a1838bcc71252E7Dd6AD81

⛓ Blockchain: Binance Smart Chain

✅ Verify the authenticity of this report on InterFi’s GitHub: https://github.com/interfinetwork

 SOCIAL @interfinetwork WEB interfi.network

PAGE 4 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Table Of Contents

Audit Information

Audit Scope .. 5

Echelon Audit Standard

Audit Methodology ... 6

Risk Classification .. 8

Centralization Risk ... 9

Smart Contract Risk Assessment

Static Analysis .. 10

Software Analysis ... 14

Manual Analysis ... 17

SWC Attacks ... 22

Risk Status & Radar Chart ... 24

Audit Summary

Auditor’s Verdict .. 25

Legal Advisory

Important Disclaimer ... 26

About InterFi Network .. 27

 SOCIAL @interfinetwork WEB interfi.network

PAGE 5 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Audit Scope
InterFi was consulted by Jackpot to conduct the smart contract security audit of their solidity source

codes. The audit scope of work is strictly limited to the mentioned solidity file(s) only:

v Jackpot.sol

Solidity Source Code On Blockchain (Verified Contract Source Code)

https://bscscan.com/address/0x7c1376481417dce6e9a1838bcc71252e7dd6ad81#code

Contract Name: Jackpot

Compiler Version: v0.8.15

Optimization Enabled: Yes with 200 runs

Audit Hash

Solidity source code is audited at hash #e7fa1b2a47d05f46fcd5c075d38c56664437aa95

 SOCIAL @interfinetwork WEB interfi.network

PAGE 6 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Audit Methodology
The scope of this report is to audit smart contract sources code of Jackpot. InterFi has scanned

contracts and reviewed codes for common vulnerabilities, exploits, hacks, and back-doors. Due to

being out of scope, InterFi has not tested contracts on testnet to assess any functional flaws. Below

is the list of commonly known smart contract vulnerabilities, exploits, and hacks:

Category

Smart Contract Vulnerabilities

v Re-entrancy

v Unhandled Exceptions

v Transaction Order Dependency

v Integer Overflow

v Unrestricted Action

v Incorrect Inheritance Order

v Typographical Errors

v Requirement Violation

Source Code Review

v Gas Limit and Loops

v Deployment Consistency

v Repository Consistency

v Data Consistency

v Token Supply Manipulation

v Access Control and Authorization

v Operations Trail and Event Generation

v Assets Manipulation

v Ownership Control

v Liquidity Access

 SOCIAL @interfinetwork WEB interfi.network

PAGE 7 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

InterFi’s Echelon Audit Standard

The aim of InterFi’s “Echelon” standard is to analyze smart contracts and identify the vulnerabilities

and the hacks. Kindly note, InterFi does not test smart contracts on testnet. It is recommended that

smart contracts are thoroughly tested prior to the audit submission. Mentioned are the steps used

by InterFi to audit smart contracts:

1. Solidity smart contract source code reviewal:

v Review of the specifications, sources, and instructions provided to InterFi to make sure we

understand the size, and scope of the smart contract audit.

v Manual review of code, which is the process of reading source code line-by-line to identify

potential vulnerabilities.

2. Static, Manual, and Software analysis:

v Test coverage analysis is the process of determining whether the test cases are covering

the code and how much code is exercised when we run those test cases.

v Symbolic execution is analyzing a program to determine what inputs cause each part of

a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,

effectiveness, clarify, maintainability, security, and control based on the established industry

and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure your smart

contracts

Automated 3P frameworks used to assess the smart contract vulnerabilities

v Consensys Tools

v SWC Registry

v Solidity Coverage

v Open Zeppelin Code Analyzer

v Solidity Code Complier

 SOCIAL @interfinetwork WEB interfi.network

PAGE 8 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Risk Classification
Smart contracts are generally designed to manipulate and hold funds denominated in ETH/BNB.

This makes them very tempting attack targets, as a successful attack may allow the attacker to

directly steal funds from the contract. Below are the typical risk levels of a smart contract:

Vulnerable: A contract is vulnerable if it has been flagged by a static analysis tool as such. As we

will see later, this means that some contracts may be vulnerable because of a false positive.

Exploitable: A contract is exploitable if it is vulnerable and the vulnerability could be exploited by an

external attacker. For example, if the “vulnerability” flagged by a tool is in a function that requires

owning the contract, it would be vulnerable but not exploitable.

Exploited: A contract is exploited if it received a transaction on the main network which triggered

one of its vulnerabilities. Therefore, a contract can be vulnerable or even exploitable without having

been exploited.

Risk severity Meaning

! High
This level vulnerabilities could be exploited easily and can lead to asset loss,

data loss, asset, or data manipulation. They should be fixed right away.

! Medium

This level vulnerabilities are hard to exploit but very important to fix, they carry

an elevated risk of smart contract manipulation, which can lead to high-risk

severity

! Low
This level vulnerabilities should be fixed, as they carry an inherent risk of future

exploits, and hacks which may or may not impact the smart contract execution.

! Informational

This level vulnerabilities can be ignored. They are code style violations and

informational statements in the code. They may not affect the smart contract

execution

 SOCIAL @interfinetwork WEB interfi.network

PAGE 9 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Centralization Risk
Centralization risk is the most common cause of decentralized finance hacks. When a smart

contract has an active contract ownership, the risk related to centralization is elevated. There are

some well-intended reasons to be an active contract owner, such as:

v Contract owner can be granted the power to pause() or lock() the contract in case of an

external attack.

v Contract owner can use functions like, include(), and exclude() to add or remove wallets

from fees, swap checks, and transaction limits. This is useful to run a presale, and to list on

an exchange.

Authorizing a full centralized power to a single body can be dangerous. Unfortunately, centralization

related risks are higher than common smart contract vulnerabilities. Centralization of ownership

creates a risk of rug pull scams, where owners cash out tokens in such quantities that they become

valueless. Most important question to ask here is, how to mitigate centralization risk? Here’s

InterFi’s recommendation to lower the risks related to centralization hacks:

v Smart contract owner’s private key must be carefully secured to avoid any potential hack.

v Smart contract ownership should be shared by multi-signature (multi-sig) wallets.

v Smart contract ownership can be locked in a contract, user voting, or community DAO can

be introduced to unlock the ownership.

Jackpot’s Centralization Status

v Jackpot’s smart contract has an active ownership.

 SOCIAL @interfinetwork WEB interfi.network

PAGE 10 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Static Analysis
Symbol Meaning

🛑 Function can modify state

💵 Function is payable

🔒 Function is locked

🔐 Function can be accessed

❗ Important functionality

SafeMath	Library			
└	tryAdd	Internal 🔒		
└	trySub	Internal 🔒		
└	tryMul	Internal 🔒		
└	tryDiv	Internal 🔒		
└	tryMod	Internal 🔒		
└	add	Internal 🔒		
└	sub	Internal 🔒		
└	mul	Internal 🔒		
└	div	Internal 🔒		
└	mod	Internal 🔒		
└	sub	Internal 🔒		
└	div	Internal 🔒		
└	mod	Internal 🔒		
IDexRouter	Interface			
└	factory	External ❗		NO❗
└	WETH	External ❗		NO❗
└	swapExactTokensForETHSupportingFeeOnTransferTokens	External ❗	🛑	NO❗
└	swapExactETHForTokensSupportingFeeOnTransferTokens	External ❗	💵	NO❗
└	addLiquidityETH	External ❗	💵	NO❗
└	getAmountsOut	External ❗		NO❗
IDexFactory	Interface			
└	createPair	External ❗	🛑	NO❗
IDexPair	Interface			
└	name	External ❗		NO❗
└	symbol	External ❗		NO❗
└	decimals	External ❗		NO❗
└	totalSupply	External ❗		NO❗

 SOCIAL @interfinetwork WEB interfi.network

PAGE 11 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

└	balanceOf	External ❗		NO❗
└	allowance	External ❗		NO❗
└	approve	External ❗	🛑	NO❗
└	transfer	External ❗	🛑	NO❗
└	transferFrom	External ❗	🛑	NO❗
└	DOMAIN_SEPARATOR	External ❗		NO❗
└	PERMIT_TYPEHASH	External ❗		NO❗
└	nonces	External ❗		NO❗
└	permit	External ❗	🛑	NO❗
└	MINIMUM_LIQUIDITY	External ❗		NO❗
└	factory	External ❗		NO❗
└	token0	External ❗		NO❗
└	token1	External ❗		NO❗
└	getReserves	External ❗		NO❗
└	price0CumulativeLast	External ❗		NO❗
└	price1CumulativeLast	External ❗		NO❗
└	kLast	External ❗		NO❗
└	mint	External ❗	🛑	NO❗
└	burn	External ❗	🛑	NO❗
└	swap	External ❗	🛑	NO❗
└	skim	External ❗	🛑	NO❗
└	sync	External ❗	🛑	NO❗
└	initialize	External ❗	🛑	NO❗
Context	Implementation			
└	_msgSender	Internal 🔒		
└	_msgData	Internal 🔒		
Ownable	Implementation	Context		
└	<Constructor>	Public ❗	🛑	NO❗
└	owner	Public ❗		NO❗
└	_checkOwner	Internal 🔒		
└	renounceOwnership	Public ❗	🛑	onlyOwner
└	transferOwnership	Public ❗	🛑	onlyOwner
└	_transferOwnership	Internal 🔒	🛑	
IERC20	Interface			
└	totalSupply	External ❗		NO❗
└	balanceOf	External ❗		NO❗
└	transfer	External ❗	🛑	NO❗
└	allowance	External ❗		NO❗
└	approve	External ❗	🛑	NO❗
└	transferFrom	External ❗	🛑	NO❗
IERC20Metadata	Interface	IERC20		
└	name	External ❗		NO❗
└	symbol	External ❗		NO❗
└	decimals	External ❗		NO❗
ERC20	Implementation	Context, IERC20, IERC20Metadata		

 SOCIAL @interfinetwork WEB interfi.network

PAGE 12 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

└	<Constructor>	Public ❗	🛑	NO❗
└	name	Public ❗		NO❗
└	symbol	Public ❗		NO❗
└	decimals	Public ❗		NO❗
└	totalSupply	Public ❗		NO❗
└	balanceOf	Public ❗		NO❗
└	transfer	Public ❗	🛑	NO❗
└	allowance	Public ❗		NO❗
└	approve	Public ❗	🛑	NO❗
└	transferFrom	Public ❗	🛑	NO❗
└	increaseAllowance	Public ❗	🛑	NO❗
└	decreaseAllowance	Public ❗	🛑	NO❗
└	_transfer	Internal 🔒	🛑	
└	_mint	Internal 🔒	🛑	
└	_burn	Internal 🔒	🛑	
└	_approve	Internal 🔒	🛑	
└	_spendAllowance	Internal 🔒	🛑	
└	_beforeTokenTransfer	Internal 🔒	🛑	
└	_afterTokenTransfer	Internal 🔒	🛑	
└	uint2str	Public ❗		NO❗
Jackpot	Implementation	ERC20, Ownable		
└	<Constructor>	Public ❗	🛑	ERC20
└	<Receive Ether>	External ❗	💵	NO❗
└	addPresaleAddressForExclusions	External ❗	🛑	onlyOwner
└	enableTrading	External ❗	🛑	onlyOwner
└	setJackpotEnabled	External ❗	🛑	onlyOwner
└	setSwapBackEnabled	External ❗	🛑	onlyOwner
└	emergencyWithdraw	External ❗	🛑	onlyOwner
└	manageBots	External ❗	🛑	onlyOwner
└	updateSwapTokensAtAmount	External ❗	🛑	onlyOwner
└	airdropToWallets	External ❗	🛑	onlyOwner
└	setNumberOfBuysForJackpot	External ❗	🛑	onlyOwner
└	setAutomatedMarketMakerPair	External ❗	🛑	onlyOwner
└	_setAutomatedMarketMakerPair	Private 🔐	🛑	
└	updateBuyFees	External ❗	🛑	onlyOwner
└	updateSellFees	External ❗	🛑	onlyOwner
└	disableJeetTaxes	External ❗	🛑	onlyOwner
└	excludeFromFees	Public ❗	🛑	onlyOwner
└	checkJackpot	Public ❗	🛑	NO❗
└	_transfer	Internal 🔒	🛑	
└	earlyBuyPenaltyInEffect	Public ❗		NO❗
└	getMinBuy	Public ❗		NO❗
└	getMinHoldings	Public ❗		NO❗
└	calcAmount	Public ❗		NO❗
└	buyerExists	Public ❗		NO❗
└	addBuyer	Internal 🔒	🛑	
└	hasEnoughTokens	Public ❗		NO❗
└	payoutRewards	Private 🔐	🛑	
└	random	Private 🔐		

 SOCIAL @interfinetwork WEB interfi.network

PAGE 13 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

└	updateJackpotTimeCooldown	External ❗	🛑	onlyOwner
└	updatePercentForJackpot	External ❗	🛑	onlyOwner
└	updateMinBuy	External ❗	🛑	onlyOwner
└	updateMinHoldings	External ❗	🛑	onlyOwner
└	setMinBuyEnforced	External ❗	🛑	onlyOwner
└	swapTokensForEth	Private 🔐	🛑	
└	addLiquidity	Private 🔐	🛑	
└	swapBack	Private 🔐	🛑	
└	transferForeignToken	External ❗	🛑	onlyOwner
└	withdrawStuckETH	External ❗	🛑	onlyOwner
└	setOperationsAddress	External ❗	🛑	onlyOwner
└	forceSwapBack	External ❗	🛑	onlyOwner
└	getBuyersListLength	External ❗		NO❗
└	getBuyersList	External ❗		NO❗
└	getPreviousBuyersList	External ❗		NO❗
└	addBuyer	External ❗	🛑	onlyOwner
└	getPreviousBuyersEarnings	External ❗		NO❗
└	getPreviousBuyersBalances	External ❗		NO❗
└	getBuyersBalances	External ❗		NO❗
└	getBuyersEligibility	External ❗		NO❗

 SOCIAL @interfinetwork WEB interfi.network

PAGE 14 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Software Analysis
Function Signatures

39509351 => increaseAllowance(address,uint256)
884557bf => tryAdd(uint256,uint256)
a29962b1 => trySub(uint256,uint256)
6281efa4 => tryMul(uint256,uint256)
736ecb18 => tryDiv(uint256,uint256)
38dc0867 => tryMod(uint256,uint256)
771602f7 => add(uint256,uint256)
b67d77c5 => sub(uint256,uint256)
c8a4ac9c => mul(uint256,uint256)
a391c15b => div(uint256,uint256)
f43f523a => mod(uint256,uint256)
e31bdc0a => sub(uint256,uint256,string)
b745d336 => div(uint256,uint256,string)
71af23e8 => mod(uint256,uint256,string)
c45a0155 => factory()
ad5c4648 => WETH()
791ac947 =>
swapExactTokensForETHSupportingFeeOnTransferTokens(uint256,uint256,address[],address,uint256)
b6f9de95 => swapExactETHForTokensSupportingFeeOnTransferTokens(uint256,address[],address,uint256)
f305d719 => addLiquidityETH(address,uint256,uint256,uint256,address,uint256)
d06ca61f => getAmountsOut(uint256,address[])
c9c65396 => createPair(address,address)
06fdde03 => name()
95d89b41 => symbol()
313ce567 => decimals()
18160ddd => totalSupply()
70a08231 => balanceOf(address)
dd62ed3e => allowance(address,address)
095ea7b3 => approve(address,uint256)
a9059cbb => transfer(address,uint256)
23b872dd => transferFrom(address,address,uint256)
3644e515 => DOMAIN_SEPARATOR()
30adf81f => PERMIT_TYPEHASH()
7ecebe00 => nonces(address)
d505accf => permit(address,address,uint256,uint256,uint8,bytes32,bytes32)
ba9a7a56 => MINIMUM_LIQUIDITY()
0dfe1681 => token0()
d21220a7 => token1()
0902f1ac => getReserves()
5909c0d5 => price0CumulativeLast()
5a3d5493 => price1CumulativeLast()
7464fc3d => kLast()
6a627842 => mint(address)
89afcb44 => burn(address)
022c0d9f => swap(uint256,uint256,address,bytes)

 SOCIAL @interfinetwork WEB interfi.network

PAGE 15 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

bc25cf77 => skim(address)
fff6cae9 => sync()
485cc955 => initialize(address,address)
119df25f => _msgSender()
8b49d47e => _msgData()
8da5cb5b => owner()
53a72975 => _checkOwner()
715018a6 => renounceOwnership()
f2fde38b => transferOwnership(address)
d29d44ee => _transferOwnership(address)
a457c2d7 => decreaseAllowance(address,uint256)
30e0789e => _transfer(address,address,uint256)
4e6ec247 => _mint(address,uint256)
6161eb18 => _burn(address,uint256)
104e81ff => _approve(address,address,uint256)
1532335e => _spendAllowance(address,address,uint256)
cad3be83 => _beforeTokenTransfer(address,address,uint256)
8f811a1c => _afterTokenTransfer(address,address,uint256)
f76f950e => uint2str(uint256)
a716b773 => addPresaleAddressForExclusions(address)
82aa7c68 => enableTrading(uint256)
c8b68875 => setJackpotEnabled(bool)
c5377ae5 => manageBots(address[],bool)
d257b34f => updateSwapTokensAtAmount(uint256)
2307b441 => airdropToWallets(address[],uint256[])
c2cca05e => setNumberOfBuysForJackpot(uint256)
9a7a23d6 => setAutomatedMarketMakerPair(address,bool)
a7f7b36f => _setAutomatedMarketMakerPair(address,bool)
8095d564 => updateBuyFees(uint256,uint256,uint256)
c17b5b8c => updateSellFees(uint256,uint256,uint256)
6c0aa525 => disableJeetTaxes()
c0246668 => excludeFromFees(address,bool)
0f29ce42 => checkJackpot()
58a6d531 => earlyBuyPenaltyInEffect()
9b20e91b => getMinBuy()
cbbf1060 => getMinHoldings()
d54b066f => calcAmount(uint256)
2680b4f7 => buyerExists(address)
bbf89803 => addBuyer(address)
c2a1c09e => hasEnoughTokens(uint256)
51e0da48 => payoutRewards(bool)
7299054c => random(uint256,uint256,uint256)
0c69dfae => updateJackpotTimeCooldown(uint256)
16d7b6f3 => updatePercentForJackpot(uint256)
d0fd52fb => updateMinBuy(uint256)
fe198b4f => updateMinHoldings(uint256)
285b9747 => setMinBuyEnforced(bool)
b28805f4 => swapTokensForEth(uint256)
9cd441da => addLiquidity(uint256,uint256)
6ac5eeee => swapBack()

 SOCIAL @interfinetwork WEB interfi.network

PAGE 16 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

8366e79a => transferForeignToken(address,address)
f5648a4f => withdrawStuckETH()
499b8394 => setOperationsAddress(address)
51f205e4 => forceSwapBack()
ef099c5b => getBuyersListLength()
4f8b9e64 => getBuyersList()
0e07a855 => getPreviousBuyersList()
26aa7c58 => addBuyer(address,uint256)
ede6afc4 => getPreviousBuyersEarnings()
297e7005 => getPreviousBuyersBalances()
dafacc5c => getBuyersBalances()
038bca57 => getBuyersEligibility()

Inheritance Graph

 SOCIAL @interfinetwork WEB interfi.network

PAGE 17 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Manual Analysis

Function Description Tested Status

Total Supply
provides information about the total token

supply
Yes Passed

Balance Of
provides account balance of the owner's

account
Yes Passed

Transfer
executes transfers of a specified number of

tokens to a specified address
Yes Passed

Approve
allow a spender to withdraw a set number of

tokens from a specified account
Yes Passed

Allowance
returns a set number of tokens from a spender

to the owner
Yes Passed

Buy Back

is an action in which the project buys back its

tokens from the existing holders usually at a

market price

NA NA

Burn
executes transfers of a specified number of

tokens to a burn address
NA NA

Mint
executes the creation of a specified number of

tokens and adds it to the total supply
NA NA

Rebase

circulating token supply adjusts (increases or

decreases) automatically according to a

token's price fluctuations

NA NA

Jackpot
executes transfers of a specified jackpot to

specified addresses
Yes Passed

Lock
locks owner access to all or some function

modules of the smart contract
NA NA

 SOCIAL @interfinetwork WEB interfi.network

PAGE 18 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Function Description Tested Verdict

Blacklist
stops specified wallets from interacting with

the smart contract function modules
Yes ! Low

Airdrop
executes transfers of a specified number of

tokens to a specified address
Yes Passed

Min Buy
a non-whitelisted wallet should transfer a

specified number of tokens
Yes ! Informational

Min Holdings
a non-whitelisted wallet should hold a

specified number of tokens
Yes ! Informational

Contract Fees
executes fee collection from swap events

and/or transfer events
Yes Passed

Jackpot Cooldown
functionality to limit the number of jackpot

transactions
Yes Passed

Anti Bot
stops some or all bot wallets from interacting

with the smart contract
Yes ! Informational

Transfer Ownership
executes transfer of contract ownership to a

specified wallet
Yes Passed

Renounce

Ownership

executes transfer of contract ownership to a

dead address
Yes Passed

 SOCIAL @interfinetwork WEB interfi.network

PAGE 19 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Notable Information 📝

v Smart contract owner can set blocks for penalty at launch. Maximum block amount should

be set to allow value change within set parameters.

 function enableTrading(uint256 blocksForPenalty) external onlyOwner {
 require(blockForPenaltyEnd == 0);
 tradingActiveBlock = block.number;
 blockForPenaltyEnd = tradingActiveBlock + blocksForPenalty;

v Smart contract utilizes jackpot. Smart contract owner can modify mentioned jackpot

related functions: setNumberOfBuysForJackpot(), updateJackpotTimeCooldown(),

updatePercentForJackpot(), setJackpotEnabled(), etc.

v Smart contract owner can change AMM. Current trading pair cannot be removed.

 function setAutomatedMarketMakerPair(address pair, bool value)
 external
 require(
 pair != lpPair,
 "The pair cannot be removed from automatedMarketMakerPairs"

v Smart contract utilizes safemath function to avoid common smart contract vulnerabilities.

 string private _name = "Jackpot";
 library SafeMath {
 function add(uint256 a, uint256 b) internal pure returns (uint256) {
 uint256 c = a + b;
 require(c >= a, "SafeMath: addition overflow");
 function sub(uint256 a, uint256 b) internal pure returns (uint256) {
 return sub(a, b, "SafeMath: subtraction overflow");
 uint256 c = a * b;
 require(c / a == b, "SafeMath: multiplication overflow");
 return c;
 function div(uint256 a, uint256 b) internal pure returns (uint256) {
 return div(a, b, "SafeMath: division by zero");
 function mod(uint256 a, uint256 b) internal pure returns (uint256) {
 return mod(a, b, "SafeMath: modulo by zero");

v Smart contract does not utilize re-entrancy guard to prevent re-entrant calls.

 SOCIAL @interfinetwork WEB interfi.network

PAGE 20 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

v Smart contract owner can call receive() for fallbacks. It is executed on a call to the contract

with empty call data. Make sure the contract can receive token through a regular transaction,

and does not throw an exception.

 receive() external payable {}

v Smart contract owner can airdrop tokens to specified wallets. There’s an elevated risk of out-

of-gas, and potential resource exhaustion errors with multi wallet airdrop.

 function airdropToWallets(
 address[] memory wallets,
 uint256[] memory amountsInTokens
) external onlyOwner {
 require(wallets.length == amountsInTokens.length);
 require(wallets.length < 600); // allows for airdrop + launch at the same exact time,
reducing delays and reducing sniper input.

v Smart contract owner can blacklist certain wallets from interacting with the contract

function modules. There’s an elevated risk of out-of-gas, and potential resource exhaustion

errors with multi wallet call.

 function manageBots(
 address[] calldata wallets,
 bool restricted
) external onlyOwner {
 for (uint256 i = 0; i < wallets.length; i++) {
 botWallet[wallets[i]] = restricted;

v Smart contract owner can change transaction fees. Maximum fee limits are set to allow the

value change within the set parameters.

 function updateBuyFees(
 buyTotalFees = buyOperationsFee + buyLiquidityFee + buyJackpotFee;
 require(buyTotalFees <= 1500, "Must keep fees at 15% or less");
 function updateSellFees(
 sellTotalFees = sellOperationsFee + sellLiquidityFee + sellJackpotFee;
 require(sellTotalFees <= 2000, "Must keep fees at 20% or less");

 SOCIAL @interfinetwork WEB interfi.network

PAGE 21 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

v Smart contract owner can change min buy limit and status. The smart contract owner can

change the value to “zero”.

 function updateMinBuy(uint256 minBuy) external onlyOwner {
 minBuyAmount = minBuy;
 function setMinBuyEnforced(bool enforced) external onlyOwner {
 minBuyEnforced = enforced;

v Smart contract owner can change min holdings limit. The smart contract owner can

change the value to “zero”.

 function updateMinHoldings(uint256 minHoldings) external onlyOwner {
 minHoldingsAmount = minHoldings;

v Smart contract owner can emergencyWithdraw() token balances.

 function emergencyWithdraw(uint256 amount) external onlyOwner {
 transfer(msg.sender, amount);

v Smart contract function addLiquidity()sends auto liquidity to an inaccessible address.

 function addLiquidity(uint256 tokenAmount, uint256 bnbAmount) private returns (uint256,
uint256) {
 (uint amountToken, uint amountETH,) = uniswapV2Router.addLiquidityETH{value: bnbAmount}(
 address(this),
 tokenAmount,
 0, // slippage is unavoidable
 0, // slippage is unavoidable
 address(0xdead),
 block.timestamp

v Smart contract has an informational severity issue which may or may not create any

functional vulnerability.

 “Potential Sandwich Attack”

v Smart contract has a medium severity issue which may or may not create any functional

vulnerability.

 “Utilization of block.timestamp and block.number in Jackpot calculation”

 SOCIAL @interfinetwork WEB interfi.network

PAGE 22 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

SWC Attacks

SWC ID Description Status

SWC-101 Integer Overflow and Underflow Passed

SWC-102 Outdated Compiler Version ! Informational

SWC-103 Floating Pragma ! Low

SWC-104 Unchecked Call Return Value Passed

SWC-105 Unprotected Ether Withdrawal Passed

SWC-106 Unprotected SELF-DESTRUCT Instruction Passed

SWC-107 Re-entrancy ! Low

SWC-108 State Variable Default Visibility Passed

SWC-109 Uninitialized Storage Pointer Passed

SWC-110 Assert Violation Passed

SWC-111 Use of Deprecated Solidity Functions Passed

SWC-112 Delegate Call to Untrusted Callee Passed

SWC-113 DoS with Failed Call Passed

SWC-114 Transaction Order Dependence Passed

SWC-115 Authorization through tx.origin Passed

SWC-116 Block values as a proxy for time ! Medium

SWC-117 Signature Malleability Passed

SWC-118 Incorrect Constructor Name Passed

 SOCIAL @interfinetwork WEB interfi.network

PAGE 23 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

SWC-119 Shadowing State Variables Passed

SWC-120 Weak Sources of Randomness from Chain Attributes Passed

SWC-121 Missing Protection against Signature Replay Attacks Passed

SWC-122 Lack of Proper Signature Verification Passed

SWC-123 Requirement Violation Passed

SWC-124 Write to Arbitrary Storage Location Passed

SWC-125 Incorrect Inheritance Order Passed

SWC-126 Insufficient Gas Griefing Passed

SWC-127 Arbitrary Jump with Function Type Variable Passed

SWC-128 DoS With Block Gas Limit Passed

SWC-129 Typographical Error Passed

SWC-130 Right-To-Left-Override control character (U+202E) Passed

SWC-131 Presence of unused variables Passed

SWC-132 Unexpected Ether balance Passed

SWC-133 Hash Collisions With Multiple Variable Length Arguments Passed

SWC-134 Message call with the hardcoded gas amount Passed

SWC-135 Code With No Effects (Irrelevant/Dead Code) Passed

SWC-136 Unencrypted Private Data On-Chain Passed

 SOCIAL @interfinetwork WEB interfi.network

PAGE 24 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Risk Status & Radar Chart

Risk Severity Status

High No high severity issues identified

Medium 1 medium severity issue identified

Low 3 low severity issues identified

Informational 5 informational severity issues identified

Centralization Risk Active contract ownership identified

75

80

85

90

95

100
Compiler Check

Static Analysis

Software AnalysisManual Analysis

Interface Safety

Score out of 100

 SOCIAL @interfinetwork WEB interfi.network

PAGE 25 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Auditor’s Verdict
InterFi team has performed a line-by-line manual analysis and automated review of smart

contracts. Smart contracts were analyzed mainly for common contract vulnerabilities, exploits, and

manipulation hacks. According to the audit:

v Jackpot’s smart contract source code has LOW RISK SEVERITY

v Jackpot’s smart contract has an ACTIVE OWNERSHIP

v Jackpot’s centralization risk correlated to the active owner is HIGH

Note for stakeholders

v Be aware that active smart contract owner privileges constitute an elevated impact on smart

contract safety and security.

v If the smart contract is not deployed on any blockchain at the time of the audit, the contract

can be modified or altered before blockchain development. Verify contract’s deployment

status in the audit report.

v Make sure that the project team’s KYC/identity is verified by an independent firm.

v Always check if the contract’s liquidity is locked. A longer liquidity lock plays an important role

in the project’s longevity. It is recommended to have multiple liquidity providers.

v Examine the unlocked token supply in the owner, developer, or team’s private wallets.

Understand the project’s tokenomics, and make sure the tokens outside of the LP Pair are

vested or locked for a longer period.

 SOCIAL @interfinetwork WEB interfi.network

PAGE 26 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

Important Disclaimer
InterFi Network provides contract development, testing, auditing and project evaluation services for

blockchain projects. The purpose of the audit is to analyze the on-chain smart contract source code

and to provide a basic overview of the project. This report should not be transmitted, disclosed,

referred to, or relied upon by any person for any purpose without InterFi’s prior written consent.

InterFi provides the easy-to-understand assessment of the project, and the smart contract

(otherwise known as the source code). The audit makes no statements or warranties on the security

of the code. It also cannot be considered as enough assessment regarding the utility and safety of

the code, bug-free status, or any other statements of the contract. While we have used all the data

at our disposal to provide the transparent analysis, it is important to note that you should not rely

on this report only — we recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts. Be aware that smart contracts

deployed on a blockchain aren’t resistant to external vulnerability, or a hack. Be aware that

active smart contract owner privileges constitute an elevated impact on smart contract safety

and security. Therefore, InterFi does not guarantee the explicit security of the audited smart

contract.

The analysis of the security is purely based on the smart contracts alone. No applications or

operations were reviewed for security. No product code has been reviewed.

This report should not be considered as an endorsement or disapproval of any project or team.

The information provided in this report does not constitute investment advice, financial advice,

trading advice, or any other sort of advice and you should not treat any of the report’s content as

such. Do conduct your due diligence and consult your financial advisor before making any

investment decisions.

 SOCIAL @interfinetwork WEB interfi.network

PAGE 27 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

About InterFi Network
InterFi Network provides intelligent blockchain solutions. InterFi is developing an ecosystem that is

seamless and responsive. Some of our services: Blockchain Security, Token Launchpad, NFT

Marketplace, etc. InterFi’s mission is to interconnect multiple services like Blockchain Security,

DeFi, Gaming, and Marketplace under one ecosystem that is seamless, multi-chain compatible,

scalable, secure, fast, responsive, and easy to use.

InterFi is built by a decentralized team of UI experts, contributors, engineers, and enthusiasts from

all over the world. Our team currently consists of 6+ core team members, and 10+ casual

contributors. InterFi provides manual, static, and automatic smart contract analysis, to ensure

that project is checked against known attacks and potential vulnerabilities.

To learn more, visit https://interfi.network

To view our audit portfolio, visit https://github.com/interfinetwork

To book an audit, message https://t.me/interfiaudits

 SOCIAL @interfinetwork WEB interfi.network

PAGE 28 | SMART CONTRACT SECURITY AUDIT OF JACKPOT

