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Abstract 
	
Apache Spark’s Broadcast Hash Join (BHJ) is widely used for efficiently joining large 
datasets with smaller dimension tables by broadcasting the smaller dataset to all executors. 
Despite its effectiveness, BHJ can incur unnecessary scan overhead when the stream side 
reads large volumes of data that are not relevant to the join keys. This paper presents a 
strategy to enhance BHJ performance by leveraging broadcast data as a SortedSet filter 
predicate at the scan level. The proposed approach utilizes the column statistics (e.g., 
Parquet min/max values) to prune irrelevant data blocks before reading, significantly 
improving I/O efficiency and overall query execution time.	

1. Introduction 
	
Apache Spark is a leading distributed computing engine used for large-scale data 
processing. Among its join strategies, Broadcast Hash Join offers substantial advantages 
when one of the datasets is small enough to be broadcast to all executors. However, as data 
volumes and schema complexity grow, the cost of evaluation of nested joins increase.	

	
This paper proposes a lightweight, backward-compatible optimization to enhance BHJ 
performance by pushing broadcasted data down to the scan layer as a SortedSet-based filter, 
enabling early data pruning during the stream-side read.	

2. Background on Broadcast Hash Joins 
	
In Spark’s Broadcast Hash Join:	
- The build side (small dataset) is broadcast to all executors.	
- The stream side (large dataset) is scanned and joined against the broadcasted data.	
- The broadcasted data is available before the stream-side iterator is opened.	

	
While this design minimizes shuffle and network overhead, the stream side still scans 
potentially large data volumes — even when many blocks are irrelevant to the join. Existing 
implementation rely on partition-level statistics and filter pushdown only if the joining 
stream side column is a partitioning column ( The Dynamic Partition Pruning concept). 	

3. Proposed Optimization Approach using RangeIn filter 
	
The core idea is to use the broadcasted build-side dataset as a SortedSet contained in a new 
type of Filter called RangeIn, if the join key implements the Comparable interface (such as 
Long, String, Date, or Integer).  The key difference between RangeIn filter and the usual In 
filter is that former contains the Comparable values in a SortedSet. . The advantages are that 



it works even if the stream side joining column is a regular column ( i.e not partitioned) and 
there is no extra overhead of obtaining build data as its already available, eliminating the 
need for dynamic pruning query on the build side. 	

Example Query:	

Select name, class, course_desc from students join courses on 
students.courseId = courses.courseId where courses.instructLang = “english”

Project (name, class, 
course_desc)

Broadcast Hash Join	
student.courseId = 
courses.courseId

Broadcast Exchange	

Filter	
InstructLang =  “english”

Scan	
Courses

Scan	
Student	
Runtime Filter courseId RangeIN	
 BroadcastedDataWrapper	



3.1 RangeIn Filter Pushdown via SortedSet 
	
- Convert the broadcasted join keys into a SortedSet, encapsulated  by RangeIn Filter	
- Pass this set to the stream-side scan before the iterator opens.	
- During data reading, compare each block’s column-level min/max statistics against the 
broadcasted key range.	
- Skip data blocks where its guaranteed that for the range spanning min/max of the block, 
have empty subset in the sorted set.	

	
This approach leverages metadata available in columnar formats (e.g., Parquet, ORC) 
without requiring data deserialization.	

3.2 Columnar vs Row-Level Filtering 
	
When data is read as columnar batches, per record-level filtering cannot occur at the scan 
level, as the data is in a columnar batch.. However, row level filtering can still be applied 
during Column-to-Row transformation, in case of nested BHJs, ensuring the optimization 
still provides measurable benefit even with columnar reads.	

4. Implementation Considerations 

4.1 Simple Join Scenarios 
	
In single-join or non-adaptive plans, implementation is straightforward: the broadcasted 
dataset is materialized early, and the scan operator can easily access the SortedSet before 
opening the iterator.	

4.2 Nested Broadcast Joins 
	
In realistic queries, multiple nested BHJs are common. In such cases, its possible that 
multiple  such filters may get pushed to same or different leaf scans. Care needs to be taken 
that a stream side scan does not get opened, until it has got all the relevant Broadcasted 
filters pushed. Then there are certain operators like Aggregate, windows or Joins of type 
Outer,  which if existing below the Broadcast Hash Join, cannot allow push down of the 
Broadcasted Keys filter.	

5. Integration with Adaptive Query Execution (AQE) 
	
Adaptive Query Execution (AQE) introduces significant complexity: stages are created for 
Exchange operators and materialized asynchronously, and plans may be re-optimized after 
each stage is materialized. Identical exchanges may be reused across stages.	



	
Because the decision to push down broadcast data cannot be made during the optimization 
phase (when join strategies are undecided), the system must defer pushdown decisions 
until planning phase. But even in the planning phase, the materialized Broadcast Data is not 
available, as it is materialized only during physical plan execution. Moreover, pushing down 
broadcast data affects exchange reuse: previously identical plans may diverge if one 
includes broadcast filters. Hence, the AQE planner must detect and manage these 
divergences gracefully to prevent incorrect plan reuse.	

The Broadcasted Data needs a proxy to represent itself as a filter to the underlying scan, till 
the actual broadcasted data is materialized.	

In case of Adaptive Query Execution, an exchange is represented as a stage. Each stage is 
fetched asynchronously  starting from Leaves to Root. Care needs to be taken to delay 
fetching of a stage, till the leaf scans of that Exchange,  have their respective materialized 
broadcast filters pushed . 	

6. Challenges and Mitigation Strategies 

7. Performance Implications 
	
The proposed optimization reduces I/O and CPU overhead in the following ways:	
- Block-level pruning: Reduces unnecessary reads for irrelevant data pages.	
- Reduced deserialization cost: Fewer records pass through the pipeline before join filtering.	

	
Preliminary internal benchmarks show that on TPC-DS-like workloads with large fact tables 
and selective dimension joins, show end-to-end query time improvements of 36% or can be 
achieved without modifying the user query or dataset schema.	

Challenge Impact Mitigation Strategy

Stage should not be fetched, 
till relevant Broadcast Filters  
have been pushed to the leaf 
scans.

Premature opening of scan 
iterator would loose 
optimization.

Asynch Stage fetching 
should be coordinated such 
that fetch is started after 
pushdown of all filters.

Exchange reuse with 
differing filters

Incorrect reuse of cached 
plans

Track filter lineage as part of 
exchange plan signature

Columnar read limitations Filtering granularity reduced Apply filter during Column-
to-Row transition in case of 
nested BHJs.



8. Conclusion and Future Work 
	
This paper presents a practical approach to enhancing Apache Spark’s Broadcast Hash Join 
by pushing broadcasted join keys as a SortedSet-based filter to the stream-side scan. By 
leveraging metadata-level pruning and column statistics, the method offers tangible 
performance improvements with minimal implementation overhead.	

	
Future work will focus on extending this optimization to multi column-joins. In case of multi 
column join, separate Broadcast Filters are pushed which looses the pairing information, as 
a result the pruning will be sub -optimal.	

	
Author: Asif Hussain Shahid	

Date: October 2025	

Keywords: Apache Spark, Broadcast Hash Join, Performance Optimization, Filter Pushdown, 
Adaptive Query Execution


	Performance Enhancement of Apache Spark’s Broadcast Hash Joins
	Abstract
	1. Introduction
	2. Background on Broadcast Hash Joins
	3. Proposed Optimization Approach using RangeIn filter
	3.1 RangeIn Filter Pushdown via SortedSet
	3.2 Columnar vs Row-Level Filtering

	4. Implementation Considerations
	4.1 Simple Join Scenarios
	4.2 Nested Broadcast Joins

	5. Integration with Adaptive Query Execution (AQE)
	6. Challenges and Mitigation Strategies
	7. Performance Implications
	8. Conclusion and Future Work


