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EXTENDED RAIM (ERAIM): ESTIMATION of SV OFFSET
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BIOGRAPHY INTRODUCTION

James L. Farrell (Ph.D., U. of MD, 1967) is a Under fairly general conditions, a single SV
member of IEEE and ION, a former AIAA local board bias is observable, so that ERAIM solutions match
member, a registered professional engineer in those from conventional RAIM.   For the 5-SV case,
Maryland, and a member of TRIANGLE plus various the same set of five positions will be computed either
scholastic honorary fraternities.  Technical experience way because, in each solution, every pseudorange but
includes teaching at Marquette and UCLA, two years that from the offset SV is insensitive to the bias state.
each at Minneapolis Honeywell and Bendix-Pacific, This produces a 5×5 matrix with one column having
and 30 years at Westinghouse in design, simulation, four zeros and a one.  Inversion yields a 4×4 partition
and validation-test for modern estimation algorithms in identical to the unaugmented solution.
navigation and tracking applications [e.g., F16 AFTI,
B1 phased array radar, SDI; tank fire control system Instead of "resting on the sidelines" the fifth SV
design for U.S. Army (ARDEC), generation of test data serves as a bias indicator for ERAIM.  Estimated SV
for validation of EW systems and for bench validation offset is an adjusted value of the fifth residual; amount
of B1 SAR mode; INS updating and transfer alignment of adjustment is the perceived contribution caused by
algorithm design, development of programs for
USAF-WPAFB (director fire control system evaluation)
and for NASA (orbit & attitude determination and
coupled rotational/structural deformation of Radio
Astronomy Explorer); missile guidance optimization
and MLE boundaries] plus digital communication
system design (synchronization, carrier tracking,
decode).  He is author of the book, +06')4#6'&
#+4%4#(6�0#8+)#6+10�(Academic Press, 1976; now
in its fifth printing) and of various columns plus over 50
journal and conference manuscripts.  Active in RTCA Fortunately this is one operation wherein an
(Washington D.C.) for several years, he is currently a
co-chairman of the Fault Detection and Isolation
Working Group (WG-5; FDI) within  SC-159.

ABSTRACT

A method has been devised for extending
RAIM.  Whereas conventional RAIM excludes the
suspect SV from the solution, ERAIM retains it while
furthermore including its bias as a fifth unknown to be
estimated.  In a 5-SV snapshot both RAIM and ERAIM
form five solutions, with each SV taking its turn as the
suspected bias source.  Extension to six SV's for fault
isolation produces a parity scalar. Additional
elaborations address complications such as multiple
biased SV's, bias histories not limited to ramps, and
further augmentation for time base differences in an
integrated system.

[1]

usage of C�RTKQTK �position and user clock values to�
form that residual.  Four of the five candidate solutions
will be biased due to modeling error and, although a
formulation is provided for this modeling effect, it will
not be apparent during operation which is the unbiased
solution.  That decision of course is assigned to the
KUQNCVKQP�portion of FDI (Fault Detection and Isolation).�
Again this will be done with the addition of a sixth
satellite.

expanded scope facilitates the solution somewhat.  QR

decomposition (previously applied to RAIM by M.
Brenner  and F. van Graas ) is directly applicable to[2]    [3] 

ERAIM.  With six SV's available there are six
candidate solutions.  Each one is overdetermined,
providing estimates for five unknowns - the usual four  

+ estimated bias for the suspect SV. Decomposition
immediately produces a parity variable that can be
used for identification.  With one corrupted SV, every
solution except one (the one with the offset SV used in
the suspect role) will produce a parity variable having
nonzero mean.  All of the techniques and procedures
relevant to statistical decisions based on parity, plus
recent extensions  for confidence levels in the[4]

presence of parameter uncertainties, can be adopted
here.  This entire analysis is applicable to time-varying
offsets, possibly representing combined error effects
(G�I�, ephemeris as well as SV clock).
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ANALYSIS

The development is subdivided into sections.
In the first of these, notation and conventions are given
for the usual (4 - SV) solution.  Expansion to five SVs  

follows, wherein it is established that familiar
expressions are preserved in their familiar form.  This
is followed by interpretations and operational
considerations applicable to FDI algorithm
development.

� � 58�%10(+)74#6+10� �
The notation C  will denote the direction cosineK�

vector corresponding to the K  SV so that, in the usual�VJ�

4 - dimensional solution,  

(1)
J  has the form,�

(2)

where \ �represents the residual vector expressed as�

(3)

while, in accordance with standard Extended Kalman
Filter (EKF) notation,

(4)

represents the "small difference of large numbers"
departure between true and estimated state while 

��

�
denotes a zero-mean vector of random errors in
pseudorange measurements.

� � 58�%10(+)74#6+10� �
The above familiar case will now be extended;

for ease of illustration, the simplest extension will be
considered first.  Suppose that a fifth SV were known
to have an offset (clock plus radial error) and it
became necessary to estimate its value Z .  With five5�
SV's available, Eq. (3) is replaceable by the 5 - 

dimensional vector relation,

(5)
in which

(6)

and

(7)

It is easily seen from direct multiplication that the
inverse of *�is

(8)

so that, when Eq. (1) is replaced by

(9)

substitution of Eqs. (6,8) produces the results,

(10)

The top partition and Eq. (1) are equivalent; thus
augmentation to include SV offset leaves the original
position-cum-user-clock solution WPEJCPIGF.  It easily
follows that the original GDOP matrix (denoted here as
I �= (J J)  = J J  and all its implications (PDOP,�

T -1  -1 -T 

HDOP, VDOP, TDOP) are likewise unaffected as are
any other characteristics of the usual 4-SV formulation.
Retention of familiar behavior is directly traceable to
the decoupling effect of the null partition in the upper
right of Eq. (8), which relieves position and user clock
corrections from dependence on the estimated SV
offset.

The solution for SV offset can be expressed in
transparently obvious form by combining the lower
partition of Eq. (10) with Eqs. (1) and (2):

(11)

Stated verbally, this last expression characterizes
estimated SV offset as an adjusted value of the fifth
residual; amount of adjustment is the perceived
contribution caused by usage of C�RTKQTK  position and�
user clock estimates to form \.
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Superscripts  are used in Eq. (11) to  • one unbiased solution (obtained when SV #2 is(+)

emphasize the identity of state variable corrections as used for the bottom row),
C� RQUVGTKQTK  estimates; contrast between roles of C�RTKQTK (before processing) and C� RQUVGTKQTK  (after� �    � �
processing) quantities will attract further attention at
appropriate points as the analysis proceeds.

Clearly this section is far from finished;  the 5-
SV development is thus far based on the condition that
a URGEKHKE  SV is known to have an offset, while all other�
SV's in the solution are known to be bias-free.  In
operation it is of course necessary to form multiple four combinations as previously noted.
candidate solutions, a procedure that has become
standardized by a host of earlier studies in integrity. First and second moments can now be given
Among those multiple (in the immediate case, five) for estimation errors, in the case of one offset SV.
solutions, well-known properties of linear estimation Multivariate density functions for the five candidate
make it apparent what to expect: solutions are characterized by

 • In the absence of any SV bias, estimates will  • one zero-mean random vector with covariance
cluster within a space commensurate with
geometry and RMS pseudorange measurement
error ) .O�

 • With a timing offset significantly larger than )  inO�
one or more SV's, solutions will disperse.  When
only one SV has the offset, one of the solutions will
be unbiased — but it will not be known which
solution is that one.

The behavior just noted was reported in Ref.
5.  Due to the aforementioned decoupling effect that
behavior remains applicable here, unaltered by the
explicit appearance of our fifth error state.  To explore
this while using the convenient notation

J   = (12)�����

an unmodeled bias D  in the L � SV contributes a�
VJ�

position error D��  and a false correction (����C ��

) D  in� L�     � � L� L�  �
T

 

user clock bias.   There will be four sets of these§

unmodeled error contributions for one SV offset (each
set of course having its own matrix J  — and therefore-1

its own different quartet of vectors 
��

).L�

To exemplify the performance just described,
let SV #2 be the unidentified bias source.   Repeated
application of Eq. (10) will then produce
������������������

For adherence to the Kalman sign convention see Eq. (14).
§ 

and
 • four biased solutions, obtained when the top

partition is made up of residuals from the following
SV combinations: 1&2&3&4, 1&2&3&5, 1&2&4&5,
2&3&4&5.  Each of these solutions will have a
nonzero mean error, equal to the product of the
bias D  in the 2  SV multiplied by the second�

nd 

column of a matrix J  — again with the reminder-1

that the vector denoted 
��

 will differ for each of the��

matrix ) )�= ) (* *)  = ) * * ; using Eq.O � �  O �    O
�� �  ��    ��T  -1   -1  -T 

(8) with the notation (- 5 ) from Ref. 5 to indicate� �
absence of the subscripted SV from the � x�� �
solution,

(13)

and

 • four random vectors with nonzero mean (due to
unmodeled bias D  in the L � SV, incorrectly�

VJ�

attributed to the M �SV) having the form,VJ�

(14)

with covariance matrices ) ), whereO
��

(15)
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If the pseudorange measurement errors are Once again the null vector in the upper right
gaussian, the expressions just given are sufficient to partition  enables  separation  of  SV  offset  in  the  5-
define completely the multivariate density functions. state  solution
For non-gaussian errors more information is required;
although beyond the scope here, this will be necessary
to investigate in a subsequent effort.

Strategy for detecting an SV offset is based
directly on knowledge of these multivariate density
properties.  For the 5-SV case the estimate for Z  itself5�
can be used as a test statistic, with the product ) �)O� � ���
used to set a threshold according to a chosen alarm
rate; a corresponding protection radius is established
(G�I�� �Ref. 3).  Since there are five solutions in this�
example, the procedure is followed for all five, each
with its own individual value of ) .  An alarm is���
declared when any of the five estimated SV offset
values trips its threshold.  This is not as conservative
as it might initially appear, since a bias will tend to
betray its presence in multiple solutions.  Still, the
existence of multiple test trials � with inputs that are
partially correlated � can complicate the detailed
parameter settings; nevertheless a method has been
realized for direct detection of SV offset.

The foregoing statement, regarding the
tendency of a bias to betray its presence repeatedly,
can be viewed as both a blessing and a curse.  By
correctly influencing the unbiased solution CPF
KPcorrectly influencing the four biased solutions via Eq.
(14), this tendency facilitates detection � while also
clouding the identity of which SV produced the biased
pseudorange.  For that task we resort, as usual, to the
addition of more information.

� � 58�%10(+)74#6+10� �
With six pseudoranges the estimation equation

becomes a 6×1 vector relation,

z = H Z  + 
��

(16)�
�
����

wherein z and 
��

 are 6×1 vectors while Z  still� 
� �� �

conforms to Eq. (6), and H is the 6×5 matrix,

h

             H = (17) 

and h is a 5-row version of J.  ERAIM procedure in this
case produces six overdetermined solutions for the
same five variables first introduced � in the role of C
RTKQTK states, as now noted � in Eq. (6).��

†

    (h h ) h
 T   -1  T

 

H  = (H H) H = (18) #     T  -1  T   

    (h h ) h
 T   -1  T

 

but the procedure recommended here for an
operational algorithm will exploit the powerful QR

decomposition [Refs. 2,3].  With each SV taking its
turn in the suspect role, the six solutions then produce
six parity UECNCTU , all of which are biased except one ��
the one with the biased SV as the suspect.
Immediately the approach for fault isolation can be
outlined thus:

       • Express the mean estimation error resulting
from bias D  in one SV (G�I��  with �  defined as�    �  �L�
the L �column of the 6×6 identity matrix),�VJ�

< Z �> = � DH � (19)� �� � � �    �   �L�
��
���  # 

       • Express the covariance matrix for each value
of M �as ) G , with��  O � ���M�

��

G  = (H H )  =���M�   ���M  ���M�
 T  -1

(20)

           (h h )                (h h )���M  ���M�                 ���M  ���M�
T  -1               T  -1

             (h h )                         (h h )���M  ���M�                          ���M  ���M�
T  -1                        T  -1

       • Obtain Q and R from decomposition of H as in
Refs. [2,3].

       • Apply conservative adjustments to ) , toO�
conform to a prescribed confidence level.

       • Use values from the foregoing steps to derive
thresholds for each parity variable .[3]

       • Determine protection radii  corresponding to[3]

the parameters obtained; these are the error
levels to be associated with the alarm rates
and probabilities stated for operation.

������������������
  The nonsingular ( |h h | g 0) solution is given here; a singular case†      T

  

would be of limited usefulness for FDI.  So would a larger number of
4-state solutions; the matrix H compacts all available information for
the operation at hand.



There is of course no claim that this
description is complete; much work obviously remains.
What is intended here is the introduction of an
approach for FDI, with the requisite analytical
justification.  ERAIM exploits established techniques
(modern estimation, QR decomposition, statistical
confidence level settings), to provide a direct means of
identifying bias sources while making a judgment of
their nature as well as their size (G�I�� � inconsistent�
results from repetitive snapshots might indicate causes
other than SV clocks).  The remainder of this section
compares ERAIM to other FDI methods and identifies
possible extensions of the basic approach.

2#56�CPF�(7674'�(&+
ERAIM differs from an earlier FDI approach [6]

by using QR rather than 3  and by setting thresholds�

from first- and second order moments { means and 

covariances; Eqs. (19) and (20) } rather than Monte 

Carlo simulation results.  That observation is intended
only to clarify a basic difference of approach, not to
imply superiority of one over the other � no
comparative study has been done.  A comparison KU�
being performed, however, involving ERAIM XU  the�

parity vector space used in Ref. 7.  If future results
indicate a preference for ERAIM, it could replace the
vector space approach as the baseline adopted by
WG-5 of RTCA SC-159.  Regardless of that outcome,
many of the tools and methods used in Ref. 7 will be
needed for the complete FDI algorithm.  These include
the  diagnostics available from time histories of
repeated snapshot solutions and, especially, the usage
of Markov Chains to define recovery / repair  

sequences.

Extension of ERAIM to multiple failures is quite
straightforward.  For two biased SVs, another row
would be added at the bottom of Eq. (7) for fault
detection only, or to Eq. (17) for FDI.  Instead of trying
each SV as suspect, the method would try every
possible SV RCKT .  Performance would of course suffer�
relative to the single biased SV case, but that would be
true of any approach.  Note that, in principle, extension
to any number of SV failures is conceptually
straightforward.  For FDI, the algorithm always calls for
one more SV than
 �� +  ( Number of biased SVs )     

until integration with another system with its own
independent time base, as in Ref. 3.  That of course
calls for still one more time state.  In all cases,
however, there is always one parity variable; a parity
URCEG � is replaced by a parity UECNCT  plus direct� �      �
estimation of any biases considered.

CONCLUSIONS

An extended RAIM (ERAIM) approach has
been defined, forming direct estimates for SV offset.
In addition to ease of interpretation afforded by this
direct estimate, the approach offers unaltered retention
of solution sets obtained from conventional RAIM.
Thus, nothing is lost from the considerable RAIM
literature already published.  As an added benefit, a
unified algorithm allows all FDI decisions to use a
UECNCT � parity variable (whereas conventional RAIM�
requires a parity vector for fault isolation).  This latter
feature becomes progressively more important as
multiple SV failures are considered.

          Future combination of ERAIM with techniques
described in Ref. [4] will allow operational decisions to
be supported by full mathematical rigor.  This will
substantiate the parameter values being quoted (G�I���
alarm rates, probabilities of detection, isolation, YTQPI�
isolation, etc.) � including firmly established levels of
confidence that those parameters will not fall short of
integrity requirements.

REFERENCES

1. Farrell, "Introducing the FDI Quintuplets," informal
discussion at RTCA (Paper #25-92/SC159-341, Jan.
1992) and at PLANS92, Monterey CA, March 1992.

2. Brenner, "Implementation of a RAIM Monitor in a
GPS Receiver and an Integrated GPS/IRS,"  ION 

Satellite Div. Int'l Tech. Meeting, Colorado Springs, 

Sept. 1990.

3. van Graas, "In-Flight Demonstration of Hybrid
GPS/Loran,"  ION Nat'l Tech. Meeting, Phoenix AZ,       

Jan. 1990.

4. Farrell and van Graas, "Statistical Validation for
GPS Integrity Test," ION Satellite Div. Tech. Meeting,  

Albuquerque NM, Sept 1991.

5. Kalafus and Chin, "Performance Measures of
Receiver-Autonomous GPS Integrity Monitoring," ION
Nat'l Tech. Meeting, Santa Barbara CA, Jan. 1988. 

6. Parkinsonand Axelrad, "Autonomous GPS Integrity  

Monitoring Using the Pseudorange Residual," +10
,QWTPCN, Summer 1988.  

7. Kline, "Fault Detection and Isolation for the
Integrated Navigation Systems Using the Global
Positioning System" (Master's Thesis), Ohio University,
Nov. 1991.


