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ABSTRACT  
 
The paramount importance of safety understandably 
exerts predominating influence over the establishment of 
requirements for accuracy and integrity. A central concept 
involved in setting those requirements is a containment 
limit; a low probability is assigned for the prospect of 
flying outside a specified volume during a given phase of 
flight. Taken literally, that imposes a demand to 
substantiate maximum allowable values for Total System 
Error (TSE), a major component of which is navigation 
error. Risk analyses intended to show satisfaction of those 
demands are often based on models using gaussian 
distributions for error contributors, with overbounding to 
compensate for any possible nonconformance. For free-
inertial coast applications, a rigorous mathematical 
method based on Extreme Value Distributions can 

achieve overbounding for data sets that are smaller by 
orders of magnitude than those required for “visual” or 
binomial bounding techniques. 
 
Extreme Value Theory (EVT) is summarized followed by 
the application of EVT to derive containment limits for 
free-inertial coast. Not all inertial error sources, such as 
vibration-sensitive and misalignment errors, are known or 
specified, thus justifying the application of EVT to 
establish containment limits with confidence. 
 

BACKGROUND  
 
Data sets are often obtained from distributions with 
unknown statistics.  In some cases only the parameters are 
unknown, and the data can be fitted to a common (e.g., 
gaussian) function.  More challenging is the case wherein 
the specific distribution is likewise unknown.  
Widespread practices in those instances include fitting the 
data to an assumed distribution.  Immediately that raises 
an issue regarding outliers.  When present in the 
histogram of available data samples, their values are 
sometimes 
 · attributed to purely speculative anomalous conditions – 

effectively disregarded, 
 · included in the computation of parameters of the 

assumed distribution (e.g., mean and ߪ of a gaussian 
fit), 

 · attributed to recognizable anomalous conditions, to 
justify dismissing them from further consideration. 

 

The first option can obviously risk catastrophic results.  
The second exercises some caution but invites an ill-
fitting distribution to leave unanswered questions about 
likelihood of worst cases.  The third option ignores risk of 
additional anomalies, possibly present but not yet 
encountered. 
 

A more subtle risk can arise from two other sources.  
First, the relevant statistics might not be stationary – 
parameters of the applicable distribution might not be 
uniform for all data samples available (or may change 
before generation of more samples not yet seen).  
Secondarily the statistics may be stationary but, beyond 
that, there might be no justification for assuming a 
distribution within some narrow class.  That is especially 



true of a gaussian fit assigning extremely low 
probabilities to sample values far beyond the available 
data span.  With a gaussian fit to non-gaussian data, 
effects having underestimated severity – unseen as yet – 
can’t be discounted. 
 

Initially it might seem unrealistic to expect successful 
extraction, from limited available data, of a more general 
distribution form and also its parameters.  Fortunately the 
means to accomplish that task have been under rigorous 
development for years.  The first few pages of [1] derive 
the general probability distribution function and subdivide 
it into three categories associated with names Weibull, 
Gumbel, and Fréchet.  This work applies Fréchet types to 
free-inertial coast operation. 
Prospects of using free-inertial coast as in-flight backup 
for GPS have been raised in numerous forums and 
publications.  Some studies have stated a case for 
permitting extended coast durations following loss of 
GPS coverage.  Other efforts have taken a decidedly 
cautionary direction, due to 
 · lack of firm commitments in Inertial Measurement Unit 

(IMU) specifications for various coefficients relevant to 
error generation, and 

 · an overriding priority attached to safety. 
 

Publications in the cautionary category have, on occasion, 
called into question other sources furnishing error budgets 
intended to justify long coast durations.  While no attempt 
is made here to single out specific sources for criticism, 
the need for realistic assessment of capability is 
unequivocally reasserted.  This work extends the scope of 
free-inertial coast investigation, to 
 · establish a basis for conservative statistical 

characterization, 
 · combine that statistical characterization with available 

analytical modeling tools, 
 · prepare for validation through flight test. 
 

Previously, EVT was applied to the integrity of Space-
Based Augmentation Systems (SBAS) in [2] and [3]. The 
approach in this paper applies similar tools to free-inertial 
coast with the justification that inertial error distributions 
have tails that decay like a power function, which is a 
necessary condition for the use of EVT. 
 

STATISTICAL ANALYSIS TOOLS  
 
Extremely useful references, including a well-known 
book [1] plus Internet sources, are used (and paraphrased) 
herein.  Using those sources has been challenging due to 
considerable differences in notation and various nuances.  
With absolutely no claim of originality, this document 
extracts from those references only the information 
needed to express desired results needed for application to 
navigation.  Since notation is inconsistent (and in a few 
cases, even ambiguous) among cited references, full 

freedom has been assumed here to adopt whatever 
notation offers the easiest means of explanation. 
 

The methodology involves computation (given a "tail 
index" – to be described shortly) of quantiles with 
exceedence probabilities (i.e., instances of samples 
exceeding prescribed thresholds).  The tail index just 
invoked is defined as the reciprocal of a parameter called 
the 
 · extreme value index ߛ  in [1], Eq. (1.1.9) or 
 · shape parameter ߦ  in [4], Eq. (1.1). 
 

These cited equations characterize the Generalized 
Extreme Value (GEV) distribution.  In addition to 
different nomenclature and notation, they differ in form 
presented (normalized in [1], not in [4]).  The unified 
representation of the GEV distribution function can be 
subdivided into the three groups previously noted.  
Immediately this investigation will focus on the Fréchet 
distribution, due to its capability for extending a statistical 
analysis beyond the range of available samples.  Extremes 
not yet been observed but possible [4] are thereby taken 
into consideration.  In this case the shape parameter is 
greater than zero, and the unified form of the distribution 
function simplifies to 
 

ሻݔሺܪ ൌ ݁ି൬ଵାక௫
ఙ ൰

షభ
഍

, ߦ ൐ 0; 1 ൅
ݔߦ
ߪ ൐ 0 (1) 

 

Samples of the distribution are to be tested against a 
threshold u. For values of u approaching the tails of the 
distribution, the expression just given simplifies further; 
producing a result having the form of a Generalized 
Pareto Distribution (GPD), obtainable by replacing the 
exponential in (1) with a truncated series representation, 
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Given the situation ሺݔ ൐  ሻ just cited, the conditionalݑ
probability that x exceeds the threshold u by an amount up 
to y is 
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With above-threshold samples ݔ ൌ ݕ ൅  ሻݕ௨ሺܨ and ݑ
converging to the GPD for large u, that conditional 
probability is 
 

ݔሺܩ െ ሻݑ ൌ
ሻݔሺܨ െ ሻݑሺܨ

1 െ ሻݑሺܨ  (4) 
 

In these statistical evaluations it is accepted practice to 
represent the unknown ܨሺݑሻ as 1 െ ௡

ே
 where n is the 



number of instances ("exceedences over threshold") for 
which ݔ ൐  from a sample size N.   Thus, in combination ݑ
with (2), the distribution function ܨሺݔሻ for 
above-threshold samples and the corresponding 
above-threshold probability 1 െ  ሻ become simplyݔሺܨ
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Before completing the derivation, attention is turned to 
interpretation.  The last equation is recognized as the 
probability of a compound event, resulting from two 
happenings: 
  · the threshold is exceeded (probability ௡

ே
) 

  · the amount by which the threshold is exceeded is 
greater than x - u .  From (2) and (4), ܩሺݔ െ  ሻ is theݑ
conditional probability of that amount being less than 
or equal to ݔ െ  The second term is therefore   .ݑ
ሾ1 െ ݔሺܩ െ  .ሻሿݑ

 

Inverting (6) produces a Value at Risk (VaR), defined 
thus: 
  · from [5]: With statistics of returns denoted  r  in the 

context of financial applications, VaR is the worst loss 
over a specified duration at a chosen confidence level; 
the value such that, at ሺ1 െ  ,ሻ percentileߙ

 

ݎሺݎܲ  ൑ ܸܴܽሻ ൌ   ߙ
 

  · from [6]:  Largest value of  x  such that, for some 
failure probability  ߙ  at a specified time t 

 

ሻ݊ܽ݌ݏ ݁݉݅ݐ ݂݀݁݅݅ܿ݁݌ݏ ܽ ݎ݁ݒ݋ ݏݏ݋ሼሺ݈ݎܲ  ൒ ሽݔ ൑ן 
 

Instead of financial data (r  or  x  above) our application 
will analyze ensembles of error in a coordinate computed 
by an inertial navigation system in free-inertial coast.  
VaR here will therefore be the largest value of that error. 
Errors accumulated through specified time spans (e.g., 
beginning with GPS data cutoff and recorded at multiples 
of five minutes thereafter) will belong to distributions 
expressed as in (5, 6).  Separately for each time span, the 
probability of error after that duration growing as large as 
ఈݔ   is determined by inversion of (6) with ܨሺݔሻ set to 
ሺ1 െ  :ሻߙ
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which is inverted to yield 
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Finally – given an empirically observed exceedence count 
n above a chosen threshold u , plus a selected value for  ߦ  
and standard deviation  ߪ  computed as usual from the 
sample population of size N  – the maximum error that 
could occur with probability  ߙ  – our VaR –  is estimated 
as 
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in conformance (with considerable differences of 
convention taken into account) to Eq (1.8) of [4]. 
 
Differences in convention just mentioned, plus the 
notational inconsistencies also noted previously, combine 
with additional subtleties and nuances within the 
references cited.  Collectively these necessitate very close 
attention to meaning and intent while extracting the 
requisite information.  First, the cited references use ߙ  in 
the usual context involving statistical confidence 
(discussed next)  and also  to represent the tail index.  The 
latter representation is not employed here; symbol ߙ 
herein has only one meaning.  The next key issue is the 
standard distinction between probability and confidence; 
  · probability applies to outcomes from infinite sample 

sets. 
  · confidence, a compounded concept, involves statistical 

inferences drawn from finite sample counts. 
 

A classical statistical connection exists between 
confidence level and notation 1 െ  but extreme value ,ߙ
distribution functions are estimated, not actually known.  
Thus 1 െ  is appropriately associated here with  ߙ
quantiles rather than rigorously evaluated confidence 
values.  To illustrate: 
  · MATLAB function  pgev.m  in Section 2.1.7 of [4] 

uses Eq. (1) to evaluate ܪሺݔ െ  ሻ at 95% cumulativeݑ
probability. 

  · MATLAB function  pgpd.m  in Section 2.1.8 of [4] 
uses Eq. (2) to evaluate ܩሺݔ െ  ሻ at 95% cumulativeݑ
probability. 

 

Also in regard to notation: for further connection among 
these different references with their different 
nomenclature, Eq. (1.8) in [4] uses ݍ ൐  ሻ forݔሺܨ
probability corresponding to a tail percentile at ݔఈ.  Two 
of the same authors then use ݍ ൌ ሺ1 െ  ሻ in Eq. (11) onߙ
page 11 of [5]; ܸܴܽሺߙሻ is expressed as the sum of the 
mean plus ିܨߪଵሺߙሻ, where the inverse of  F  with 
argument  (α – typically 1% or 5%)   is the ሺݍ ൌ 1 െ  ሻ௧௛ߙ
quantile {although that relation appears in a 
variance-covariance (rather than extreme value) 
formulation, its development is for VaR}.  The resulting 



expressions from [4] and [5] (again, with close attention 
to notational inconsistencies – including even upper and 
lower case usage for n and N ) correspond to Eq. (9) here. 
 

Material presented here thus far, then, involves 
probabilities and, for finite sample sets, quantiles rather 
than confidence levels.  Confidence intervals are applied 
to estimated values for  ߪ  and ߦ, through developments 
appearing in [7] and noted in [4].  As long as ߦ ൐ െ0.5 
the standard errors for those estimates can be obtained via 
maximum-likelihood methods.  Note that this does not tie 
maximum-likelihood to the Extreme Value distribution 
function, but only to its parameter estimates – which in 
[7] are 
 · shown to be asymptotically normally distributed 
 · used in further derivations applying corresponding 

confidence intervals to the quantiles themselves. 
 

That extended development enables MATLAB function  
gpd_q.m  in Section 2.3.1 of [4] to calculate confidence 
intervals for GPD quantiles.  An example is then given 
showing 95% confidence bounds for 0.999 tail 
probability. Another issue not always made clear in the 
literature involves distinctions among different Pareto 
distribution types.  Further insights are fortunately 
provided in [4]: 
 · There is an ordinary Pareto distribution with ߦ ൐ 0  

(that is the case of interest here). 
 · A GPD with ߦ very near 0  corresponds to an 

exponential distribution.  That is consistent with 
appearance of the exponential within the Gumbel 
distribution types. 

 · There is a Pareto II-type distribution with ߦ ൏ 0.  Even 
those cases can be considered within the realm of 
"heavy-tailed" distributions if  ߦ ൐ െ0.5. 

· For ߦ ൐ 0 the expected value of ߦ௞ is infinite for ݇ ൐ ଵ
క
.  

Thus if ߦ ൐ ൅0.5, the variance is infinite. If  ߦ ൐ ൅0.25  
the kurtosis is infinite.  These factors will of course be 
taken into account in this IMU coast application. 

 

Determination of confidence for specified tail 
probabilities, as just described, comes very close to just 
the capability needed – in a qualitative sense.  
Quantitatively, however, two issues need further 
consideration; those items and proposed steps toward 
solution follow: 
 · 0.999 is much lower than acceptable containment 

probability values – and sample sizes needed to 
establish quantiles with "many more nines" can be 
quite large.  Rather than prescribing impractical data 
sets, though, it is noted that the plot in Figure 17 of [4] 
approaches a fairly straight line.  Extrapolation offers a 
possible way to reach farther out on the tails. 

 · At any confidence level (e.g., 99%) there is a small-
but-not-at-all-negligible (e.g., 1%) chance for being out 
of the interval range.  How far beyond range is not 

clear from available statistical models.  Addressing that 
issue is deferred (see Possible Future Extensions). 

 

At this point, overall subject matter can be subdivided 
into two main categories – i.e., 1) acquisition of data, and 
2) analysis of the data obtained by presently known means 
– with a third topic (refinements or extensions) deferred 
to a later section.  Immediate plans call for generating 
random sets from the IMU coast simulation defined and 
programmed in [8].  Those data sets will then be 
processed in accordance with the following design 
decisions: 
1) Fréchet (ߦ ൐ 0) distributions can determine VaR's far 

beyond the range of available data.  Gumbel (ߦ ൌ 0) 
and Weibull (ߦ ൏ 0) distribution classes have much 
less importance in this investigation. 

2) With no correlation within  sample sets at 5, 10, 15, 20  
· · ·  minutes, groups of results at 5-minute multiples can 
be analyzed separately.  

3) Using different initial headings can help to mitigate 
introduction of correlations into the simulated IMU 
coast data. To maintain validity of comparisons, all 
flight paths will be congruent, with a procedure turn 
used for missed approach.  The turn is to be 
immediately 
· preceded by GNSS cutoff 
· followed by a free-inertial straight course leg. 

4) Using MATLAB functions from [4] as needed, steps 
listed here will yield VaR values – maximum error 
that could occur with probability  ߙ  – for each coast 
duration. 

 

FREE-INERTIAL ERROR SOURCES 
 
Applying Extreme Value Theory to free-inertial coast is 
necessitated by the mixed gaussian nature [11] of the 
error contributors.  That is, each error source is 
reasonably characterized as coming from a gaussian 
ensemble – but the ensembles have different variances.  
Extreme value probabilities are consequently higher than 
corresponding probabilities obtained from a normal 
distribution.  For a formal assessment of this fundamental 
reality page 178 of [11] provides a definition and basic 
features.  Presented here is an adaptation of that material, 
with notation modified to avoid conflict with other 
symbols used in this development: 
 

વ  is a ܭ ൈ 1 random vector and ۻ  is a ܭ ൈ  random ܭ
matrix – a positive semidefinite "mixing parameter" in 
[11]; here a more restrictive positive definite condition is 
chosen.  Its randomness provides a way to formalize 
variations among cumulative distribution function (cdf) 
parameters.  Those variations produce tails that don't 
conform to a normal gaussian cdf.  When the distribution 
of  ܆ given  ۻ  is ܭ-dimensional gaussian with "centre" ߤ 
and covariance matrix ۻ, then the marginal distribution 
of  ܆  is mixed gaussian. 



 

A highly important property is noted in [11] – the statistic 
 

ۄଶݏۃ ൌ ሺ܆ െ ܆ଵሺିۻሻTߤ െ  ሻ (10)ߤ
 

is distributed as ߯ଶ with ܭ degrees of freedom (ܭ - not 
  .(ଶ - misprint in [11] acknowledged by its authorܭ
Reasoning is as follows: this trait clearly holds for fixed  
 and, since the conditional distribution does not depend  ۻ
on ۻ, it also holds marginally.  This is a powerful 
generalization of a trait well known from the restrictive 
(fixed parameter) case. 
 
In combination with Eqs. (II.20, 21) of [8], Eq. (10) could 
help to analyze  ݏۃଶۄ  at least in the restrictive case of zero 
mean for every sample run ("centre" ߤ identically zero).  
That is not pursued, however, for the following reasons: 
  · The analysis in APPENDIX II.B of [8] was written 

only as backup to the APPENDIX II.A program 
preceding it.  That analysis is less general than the 
program (see closing paragraphs of APPENDIX 2.A.1 
and 2.B). 

  · The program just mentioned is complete only after 
addition of effects covered in Table 4.2 of [8]. 

  · Combining a model just described with a random 
matrix in Eq. (10) is nontrivial; simulation is used 
instead. 

 

In this application the elements of ܆  – variable(s) under 
investigation – come from three main categories that drive 
free-inertial error, i.e., vertical deflections, accelerometer 
inaccuracies, and combined (gyro + computational) drifts.  
The last two subdivide further; total inertial instrument 
errors – even the "biases" – include several rectification 
effects from vibrations, both translational and rotational.  
What necessitates mixed gaussian modeling isn't just 
randomness of the vibration waveforms.  Among flights 
in different areas at different times with different 
equipment, wide variations exist in the vibration spectra 
themselves and also in the sensitivity coefficients acting 
on them.  Even if correlation issues (e.g., from commonly 
traversed gravity fields) are ignored, at least the variances 
for instrument coefficients can be randomly selected, 
from some overall spec-derived ensemble, for each 
separate trial.  The wide variety of individual contributors 
to overall degradation, noted in Section 4.B.2 of [8], gives 
ample reason to expect mixed gaussian characteristics in 
the results. 
 

Although each ensemble used to sample error-generating 
parameters will have zero mean over all flights, many can 
produce within each separate flight time-varying 
accelerometer and gyro bias components with nonzero 
average over one flight duration.  These can include 
effects that are motion-independent (e.g., random walks 
with time constants not necessarily uniform) and/or 
motion-dependent (e.g., nonzero mounting 
misalignments, imperfect scaling, etc.).  With the random 
elements separately initialized (either at zero or drawn 

from a zero-mean ensemble) and  built up as a simple 
Markov process, the ensemble average would 
automatically be maintained at zero. 
 

VALUE-AT-RISK DETERMINATION 
 
Steps just described will produce mixed gaussian outputs 
which, as noted in [4], fall within the Fréchet class of 
distributions.  Usage as inputs to the free-inertial coast 
simulation will yield VaR values for each separate coast 
duration as previously noted.  The VaR values, as  shown 
in Eq. (9), conform to a simple relation – the sum of a 
threshold  u  plus  ߪ  amplified by a multiplying factor.  
Multipliers from sets of ௡

ே
  values [0.0001, 0.0003, 0.001], 

with a value for ߦ  of 0.3, are plotted in Figure 1. 

 
Figure 1. ߪ Multiplier for 0.3 = ߦ 

 

For a shape parameter of 0.3 = ߦ, a maximum allowable ߙ 
of  10ି଻ is satisfied above 23.1ߪ  beyond threshold for ௡

ே
 

at  0.0001 {in the group of curves, the top curve is for ௡
ே

  =  
0.001 and the lower curve is for  ௡

ே
 =  0.0001 }.  The more 

above-threshold events in the observed samples, the 
greater the established tendency for high values to appear. 
 
The plotted results clearly exhibit capability to extend 
statistical analysis beyond the range of available 
observations.  Credibility of the resulting inferences 
would likely be greater for lower multiples of  ߪ  – that 
seems to follow from the fact, noted after Eq.(4), that an 
unknown distribution function can be represented only in 
terms of the empirically observed fraction  

௡
ே

.  Excessively 
large multiples can be avoided in practice by  
  · high threshold settings that disallow large ௡

ே
 

  · accepting values of ߙ that are not extremely low. 
 
The first of these steps makes a case for large sample 
population sizes (e.g., sets of 10ହ 1-hr simulation runs – 
roughly comparable to the number of flight-hours / day) to 
maintain reliability of results.  The second tends to limit 



how far those observations should be extended – e.g., 
attempts to pin down a precise VaR for a one-chance-in-a-
billion event will obviously present challenges. 
 
Methods of obtaining all parameter values will now be 
summarized.  From the large Monte Carlo coast 
simulation run set, satisfying the desire for small values of  
௡
ே

 – 0.0001 or less – the procedure is as follows: 
  · Extraction of nav errors after a certain coast duration, 

which will be taken as 30 min for two scenarios.  For 
each scenario, complete the following steps: 

  · Computation of ߪ from the time history for the 30-min 
duration, via the standard relation. 

  · Determination of  ߦ  for the 30-min time history, with 
the aid of the plot functions as illustrated in [4]. 

  · Usage of MATLAB function findthresh.m. to 
obtain the threshold causing a chosen fraction  ௡

ே
 

  · Generation of a plot of the type just shown, to provide 
appropriate ߪ-multiples for the specific ߦ  and  

௡
ே

 
  · Addition of the threshold to the multiples of ߪ, 

producing the VaR values for ߙ  at 10ି଻, … , 10ିହ. 
 

The bounding distributions will then be plotted for each 
of the simulation scenarios. 
 

FREE-INERTIAL SIMULATION 
 
As detailed in [8], initialization of the free-inertial 
simulation considers the following balance resulting from 
obtaining zero velocity error: 
 

Ψ ൈ A ൅ NA ൌ ૙, for ݐ ൏ 0 (10) 
 

Where Ψ is the misorientation vector, A is the specific 
force in locally-level coordinates, and NA is the total 
acceleration error. Error sources considered are: 
  · Gyro drift rate components modeled as first-order 

processes with a 1-hr time constant and selected RMS 
noise 

  · Accelerometer offset modeled as first-order processes 
with a 1-hr time constant and selected RMS noise 

  · Gyro scale factor error and uncompensated projections 
along the other two gyros’ intended input axes 

  · Gravity anomalies and vertical deflections with a 20-
nmi correlation distance 

  · Initial heading error 
 

Table 1 summarizes the error sources and the results from 
100 Monte Carlo runs, where the performance numbers 
are the standard deviations after 1 hr over the 100 runs. 
The flight trajectory consists of a 180° turn followed by 
straight and level flight. The aircraft speed is 200 knots, 
while the gyro and accelerometer scale errors are set to 
zero. The first five rows in Table 1 show the contributions 
of each of the five major error sources. Row 6 shows the 
combined contributions of the five error sources. Scenario 

1 is represented by row 7, where the gyro drift rate is 
doubled to 0.02 °/hr. Scenario 2 is represented by row 8, 
where the gyro yaw misalignment has been increased 10-
fold from 10 ݀ܽݎߤ to 100 ݀ܽݎߤ. Gyro mounting 
misalignment is shown to be a major concern for free-
inertial coast in [12]. 
 

Table 1. Free-Inertial Simulation Parameters and 
Performance after 1-hr Coast 

 
 

Next, the two scenarios were run 100,000 times where 
90% of the runs used nominal errors (row 6 of Table 1), 
while 10% of the runs used larger errors for gyro drift and 
yaw misalignment, respectively. The time duration for 
each scenario was 30 min and the maximum nav errors 
were recorded that occurred during the 30-min coast 
duration. Figure 2 shows the East position errors for 
scenario 1 for all 100,000 runs, while Figure 3 shows the 
East position errors for scenario 2. The standard deviation 
for scenario 1 is 1.60 km, while the standard deviation for 
scenario 2 is 1.95 km. 

 
Figure 2. Free-Inertial East Errors after 30 min Coast for 

Scenario 1 



 
Figure 3. Free-Inertial East Errors after 30 min Coast for 

Scenario 2 
 
The one-sided complement of the cdfs are plotted in 
figures 4 and 5 for each of the two scenarios. The solid 
line represents the actual data, while the dashed line 
represents the complement of the gaussian cdf calculated 
from the standard deviation of the data. Scenario 1 has the 
appearance of a gaussian distribution. Scenario 2 on the 
other hand, shows data points well in excess of that 
expected from a gaussian distribution.   

 
Figure 4. One-sided Complement of Free-Inertial East 

Error CDF after 30 min Coast for Scenario 1 

 
Figure 5. One-sided Complement of Free-Inertial East 

Error CDF after 30 min Coast for Scenario 2 
 
For scenario 1, the shape parameter ߦ was estimated to be 
0.075 with a 95% upper bound of 0.11. For scenario 2, the 
shape parameter was estimated to be 0.06 with a 95% 
upper bound of 0.15. Finally, the containment bounds 
were calculated and are shown in figures 6 and 7 for the 
two scenarios. 

 
Figure 6. Coast Containment for Scenario 1 

 



 
Figure 7. Coast Containment for Scenario 2 

 
 
Possible Future Extensions: 
 
The good-but-not-perfect confidence levels described 
earlier lessen the rigor that can be attached to results 
produced through the methods used here.  The 
ramifications could be studied further in the future. 
 

As an alternative to separate sample sets at different 
times, theoretical means of using time-varying parameters 
to hold all data in one set are offered in [6].  At present 
there is no clear and rigorous way to define functions to 
represent the time-varying parameters (even the methods 
for estimating fixed values were until now untried for 
coast applications).  If time-varying ߦ values develop in 
the future, they could enable consolidation of data from 
unequal coast durations. 
 

The main theory was developed for independent 
identically distributed ("iid") samples.  The independence 
condition can be relaxed as in [9].  The identically 
distributed condition could also be relaxed – theoretically. 
 

Multivariate EVT deals with vector-valued (rather than 
scalar) variables, analogous to a portfolio rather than a 
single stock investment.  Conceivably this might be used 
for concurrent analysis of two features (e.g., along-track 
and cross-track error), or multiple features.  In the two-
feature instance, the "track" direction would presumably 
be chosen  in conformance to the time immediately before 
or after the procedure turn.  Rather than using multivariate 
EVT forms, behavior of multiple variables (e.g., 
along-track or cross-track errors) can be analyzed 
separately. 
 

None of these extensions are included in the present 
development.  The immediate objective is to begin 
introducing EVT into free-inertial coast evaluation. 

 

CONCLUSIONS 
 
Extreme Value Theory (EVT) has great promise for 
application to free-inertial coast containment. Gyro 
mounting misalignment is shown to be a major concern. 
Practical containment bounds out to 10ି଻ exceedance 
probability are obtained based on experimental data from 
10ହ Monte Carlo simulation runs.  
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