Calculations

Overcoming your fear of numbers

Presented by: Tina Da Silva
WDHB Laboratory

Calculations performed in laboratory use

- Converting metric units
- Time
- Fractions, decimals and percentages
- Converting rpm to g
- Dilutions
- Statistics

- The metric system is called a decimal based system because it is based on multiples of 10
- Any measurement given in one metric unit can be converted into another metric unit simply by moving the decimal place

Basic Units

King Henry Doesn't usually

Drink Chocolate Milkshake

Move the decimal place to the right (multiply) or the left (divide)

Convert 2 ml into $\mu \mathrm{l}$

Convert 10.Omg into g

Move the decimal place to the
left (divide)

Convert 85 g into kg

Convert 85 g into kg

$85,0 \mathrm{~g}$

$$
8,50 \quad 0,850
$$

0,085

12 hour clock vs 24 hour clock

There are 2 main ways to show the time:

- 24 hr clock
- 12 hr clock or AM/PM

24 hr clock - shows how many hours and minutes since midnight

AM/PM or 12 hr clock is split into

- The hrs running from Midnight to Noon (AM)
- The other hrs running from Noon to Midnight (PM)
>60 seconds in 1 minute
$\Rightarrow 60$ minutes in 1 hour

Convert the following:

- 11:30pm = 23:30
- 19:50 = 7:50pm
- 1:45am = 01:45
- $240 \mathrm{sec}=4 \mathrm{~min}$
- $195 \mathrm{~min}=3$ hours and 15 min

Fractions
 $1 / 4=\frac{1}{4} \frac{\text { Numerator }}{\text { Denominator }}$

Numerator $=$ is the number of parts (top number)

Denominator $=$ the number of parts the whole is divided into (bottom number)

Converting Fractions to Decimals
Using a calculator:
Divide the Numerator by the Denominator

- Convert $\frac{1}{4}$

$$
1 \div 4=0.25
$$

- Convert $\frac{1}{2}$
$1 \div 2=0.5$
- Convert $\frac{3}{4}$
$3 \div 4=0.75$

Converting Fractions to Decimals

Converting without a calculator:
Find a number that you can multiply the denominator to make it 10 or 100 or 1000 , then multiply both numerator and denominator by that number.

- $\frac{3}{5}=\frac{60}{100}$ so $60 \div 100=0.60$
- $\frac{\mathbf{3}}{8}=\frac{\mathbf{3 7 5}}{\mathbf{1 0 0 0}}$ so $375 \div 1000=0.375$
$\times 333$
exception
- $\frac{\mathbf{1}}{\mathbf{3}}=\frac{333}{999}$ so $333 \div 1000=0.33333333$

Converting Decimals to Percentages

- Multiply the decimal by 100, then add on the \% symbol
Convert 0.36
$0.36 \times 100=36 \%$
Convert 1.65
$1.65 \times 100=165 \%$
Convert 0.08
$0.08 \times 100=8 \%$

Converting

 rpm to g

Converting rpm and g

G force or RCF (Relative Centrifugal Force) is the amount of acceleration applied to a sample This depends on

- rpm (Revolutions Per Minute)
- Radius of the rotor (r), measured in cm's

Formula to convert rpm into g :

$$
\mathrm{g} \text { force }(\text { RCF })=11.18 \times\left(\frac{r p m}{1000}\right)^{2} \times r
$$

Converting rpm and g

Convert 3000rpm to g .
The radius of the centrifuge is 160 mm .

Convert 160 mm into $\mathrm{cm}=16 \mathrm{~cm}$.
Using formula:
g force $($ RCF $)=11.18 \times\left(\frac{r p m}{1000}\right)^{2} \times r$
g force $($ RCF $)=11.18 \times\left(\frac{3000}{1000}\right)^{2} \times 16 \mathrm{~cm}=1610 \mathrm{~g}$

Simple Dilutions

- A simple dilution is one in which a unit volume of liquid material is combined with a solvent liquid to achieve a desired concentration
- The dilution factor is the total number of unit volumes in which your material will be dissolved
$1: 5$ dilution $=1$ unit volume of solute +4 unit volume of solvent (hence 1+4 = 5)

Simple Dilutions

Example 1

Prepare a 1:8 dilution of concentrated stock solution of Viraclean to a final volume of 400 ml with Distilled water

Determine what the unit volume is :
$400 \mathrm{ml} \div 8=50 \mathrm{ml}$, then
$400 \mathrm{ml}-50 \mathrm{ml}=350 \mathrm{ml}$ so
> Dilute 50 ml concentrated stock solution of Viraclean + 350ml Distilled water

Simple Dilutions

Example 2

Describe the preparation of a 1:5 dilution of liquid bleach to a total volume of 1.5 L

Convert 1.5 L to ml
$1.5 \mathrm{~L}=1500 \mathrm{ml}$
Determine what the unit volume is :
$1500 \mathrm{ml} \div 5=300 \mathrm{ml}$, then
$1500 \mathrm{ml}-300 \mathrm{ml}=1200 \mathrm{ml}$
$>$ Dilute 300ml liquid bleach + 1200ml Distilled water

Making fixed volumes of specific concentrations from liquid reagents

- $\mathrm{V}=$ volume, $\mathrm{C}=$ concentration
(Stock solution) V1C1 = V2C2 (New solution)

$$
\text { or } \mathrm{V} 1 \times \mathrm{C} 1=\mathrm{V} 2 \times \mathrm{C} 2
$$

Making fixed volumes of specific concentrations from liquid reagents

(Stock solution) V1C1 = V2C2 (Final solution)
Example 1:
You have: 3 ml of $100 \mathrm{mg} / \mathrm{ml}$ Ampicillin stock solution You want: $200 \mu \mathrm{l}$ (= V2) of solution of $25 \mathrm{mg} / \mathrm{ml}$ (= C2)

What is the volume of stock solution you will start with?

$$
\begin{array}{ll}
\text { So, } & 100 \mathrm{mg} / \mathrm{ml}(=\mathrm{C} 1) \\
& \mathrm{V} 1 ? \\
& 200 \mu \mathrm{l}(=\mathrm{V} 2) \\
& 25 \mathrm{mg} / \mathrm{ml} \quad(=\mathrm{C} 2)
\end{array}
$$

(Stock solution) V1C1 = V2C2 (New solution)

Example 1:

$$
\begin{aligned}
& 100 \mathrm{mg} / \mathrm{ml}(=\mathrm{C} 1) \\
& 200 \mu \mathrm{l}(=\mathrm{V} 2) \\
& 25 \mathrm{mg} / \mathrm{ml}(=\mathrm{C} 2)
\end{aligned}
$$

What is the volume of stock solution you will start with?
convert $200 \mu \mathrm{l}$ to $\mathrm{ml}=0.2 \mathrm{ml}$, then $\mathrm{V} 1 \mathrm{C} 1=\mathrm{V} 2 \mathrm{C} 2$

$$
\mathrm{V} 1 \times 100 \mathrm{mg} / \mathrm{ml}=0.2 \mathrm{ml} \times 25 \mathrm{mg} / \mathrm{ml}
$$

So, $V 1=\frac{0.2 m l \times 25 \mathrm{mg} / \mathrm{ml}}{100 \mathrm{mg} / \mathrm{ml}}=\frac{5}{100}=0.05 \mathrm{ml}$ or $50 \mu \mathrm{l}$

Making fixed volumes of specific

 concentrations from liquid reagents(Stock solution) V1C1 = V2C2 (Final solution)
Example 2:
What volume of a given 10 mM stock solution is required to make 20 ml of a $50 \mu \mathrm{M}$ solution?
using formula: C1V1 $=$ C2V2
$\mathrm{C} 1=10 \mathrm{mM}$
V1 = ? Stock solution
$\mathrm{C} 2=50 \mu \mathrm{M}$
$\mathrm{V} 2=20 \mathrm{ml}$

(Stock solution) V1C1 = V2C2 (New solution)

Example 2:

V1 ? Stock solution
$10 \mathrm{mM}(=\mathrm{C} 1)$
20 ml (= V2)
$50 \mu \mathrm{M}$ ($=\mathrm{C} 2$)

convert $50 \mu \mathrm{M}$ to $\mathrm{mM}=0.05 \mathrm{mM}$, then $\mathrm{V} 1 \mathrm{C} 1=\mathrm{V} 2 \mathrm{C} 2$

$$
V 1 \times 10 \mathrm{mM}=20 \mathrm{ml} \times 0.05 \mathrm{mM}
$$

So, $V 1=\frac{20 \mathrm{ml} \times 0.05 \mathrm{mM}}{10 \mathrm{mM}}=\frac{1}{10}=0.1 \mathrm{ml}$

Mole and Molar solutions

A mole is a unit expressing the amount of a substance

Molecular weight (MW): the mass (g) of 1 mole of an element ($\mathrm{g} / \mathrm{mole}$)

Formula weight (FW): the mass of 1 mole of the compound

Molarity: \# of moles of a chemical or compound in 1 L of solution ($\mathrm{M}=\mathrm{mole} / \mathrm{L}$)

Mole and Molar solutions

To prepare a litre of a simple molar solution from a dry ingredient
Chemical MW $=194.3 \mathrm{~g} / \mathrm{mole}$. Make a 0.15 M (mole/L) solution
$194.3 \mathrm{~g} / \mathrm{mole} \times 0.15 \mathrm{moles} / \mathrm{L}=29.145 \mathrm{~g}$ per 1 L

Mole and Molar solutions

To prepare a specific volume of a molar solution from a dry reagent
Chemical MW $=180 \mathrm{~g} / \mathrm{mole}$, you need 25 ml of $0.15 \mathrm{~mole} / \mathrm{L}$ solution

Convert 25ml to $\mathrm{L}=0.025 \mathrm{~L}$
$\frac{g}{\text { specific } L}=$ desired molarity (mole/L) \times MW ($\mathrm{g} / \mathrm{mole}$)
$\mathrm{g}=$ specific $\mathrm{L} \times$ desired molarity $\times \mathrm{MW}$
$0.025 \mathrm{~L} \times 0.15 \times 180=0.675 \mathrm{~g}$

Calculating the MW

Periodic Table of the Elements

1	Periodic Table of the Elements																18
$\underbrace{\mathrm{H}}_{\substack{1 \\ \text { Hyctrogen } \\ 1.01}}$	2											13	14	15	16	17	
$\underbrace{\text { Li }}_{\substack{3 \\ \text { Lithiom } \\ 6.94}}$	${ }^{4} \text { Be }$											$\int_{\substack{\text { Boren } \\ 10.81}}^{\mathbf{B}}$	${ }_{\substack{6 \\ \text { Carbon } \\ 12.01}}^{C}$		$\begin{aligned} & 8 \mathrm{O} \\ & \begin{array}{l} \text { 0xyen } \\ 16.00 \end{array} \\ & \hline \end{aligned}$	F Fluarine 19.00	${ }_{\substack{10 \\ \mathrm{Ne} \\ \mathrm{Ne} \\ \text { Neon } \\ 20.18}}$
$\begin{array}{\|c} 11 \\ \mathrm{Na} \\ \text { Sodinme } \\ 22.99 \end{array}$	$\underset{\substack{12 \\ \text { Magne.n.am } \\ 24.31}}{\mathrm{Mg}^{2}}$	3	4	5	6	7	8	9	10	11	12		${ }_{\substack{14 \\ \text { sincon } \\ 28.09}}$		${ }_{\substack{16 \\ \text { Su } \\ \text { Sus. } \\ 32.06}}$	${ }_{\substack{17 \\ \text { Cliorine } \\ \text { 35.45 }}}$	${ }_{\substack{18 \\ \text { Argon } \\ 39.95}}$
$\begin{array}{\|c} { }^{19} \mathbf{K} \\ \text { Potassian } \\ 39.10 \end{array}$	${ }^{20}$ Ca	${\underset{\substack{\text { Scandium } \\ 44.96}}{21} \mathrm{SC}}^{2}$	${ }_{\substack{22 \\ \text { Theanism } \\ 47.88}}$		${ }_{\substack{24 \\ \text { Cromerium } \\ 51.99}}^{\mathrm{Cr}}$	25 Mn Manganese 54.94	$\begin{gathered} 26 \\ \text { Fe } \\ \text { tron } \\ 55.93 \end{gathered}$	${ }^{27} \text { Co }$	$\stackrel{\substack{\text { Nockel } \\ 58.69}}{\mathbf{N i}}$	${ }^{29} \mathrm{Cu}$	$\stackrel{30}{\text { Znc }}_{\substack{\text { Znc } \\ 65.39}}$	${ }_{\substack{31 \\ \text { Gallhme } \\ 69.73}}$	$\underset{\substack{32 \\ \text { Gemanium } \\ 72.61}}{\mathrm{Ge}}$	$\underset{\substack{\text { Assenk } \\ 74.92}}{33}$		${ }_{\substack{35 \\ \mathbf{B r o m i n e} \\ 79.90}}^{\mathrm{Br}^{2}}$	$\underbrace{}_{\substack{36 \\ \text { Krrpton } \\ 84.80}}$
37 Rbb Rubldum 84.49	${\underset{\substack{\text { Stonetum } \\ 87.62}}{38} \mathrm{Sr}}_{\mathbf{5 6}}$		${\underset{\substack{\text { Zirconlum } \\ 91.22}}{40} \mathrm{Zr}}_{\substack{ \\\hline}}$	$\mathbf{N}_{\substack{\text { Niobium } \\ 92.91}}^{41}$	42 Mo Molybdenum 95.94	$\begin{gathered} { }^{43} \mathrm{TC} \\ \text { Tectretium } \\ 98.91 \\ \hline \end{gathered}$	$\stackrel{44}{\substack{\text { Rechenium } \\ 101.07}}$	$\stackrel{45}{\substack{\text { Rhediam } \\ 102.91}}$	$\stackrel{46}{\substack{\text { Pallodum } \\ \text { Pd } \\ 106.42}}$	${ }_{\substack{47 \\ \text { sige } \\ 107.87}}$	${ }_{\substack{48 \\ \text { Cadmism } \\ 112.41}}^{\text {Cd }}$	$\int_{\substack{49 \\ \text { Indiam } \\ 114.82}}$	$\mathrm{Sn}_{\substack{50 \\ 118.71}}$	$\underset{\substack{\text { Antimeny } \\ 121.76}}{51}$	52 Te Telurium 127.	$\underbrace{\text { I }}_{\substack{53 \\ \text { loche } \\ 126.90}}$	$\stackrel{54}{\substack{5 \times \\ \text { Xenon } \\ 131.29}}$
${ }^{55}$ Cs	$\underbrace{}_{\substack{56 \\ \text { Barium } \\ 137.33}}$	57-71 Lantharides	$\underset{\substack{\text { Hastrium } \\ 178.49}}{72} \mathrm{Hf}$	${ }_{\substack{73 \\ \text { Tantaium } \\ 180.95}}$	${ }_{\substack{74 \\ \text { Tungsten } \\ 183.85}}^{\mathrm{W}}$	75 Re Rheniom 186.21	$\begin{aligned} & 76 \\ & \text { Oss } \\ & 190.23 \\ & 10 \end{aligned}$	${ }_{\substack{77 \\ \text { Irdidimm } \\ 192.22}}$	${ }_{\substack{78 \\ \text { Pt Ptinnom } \\ 195.08}}$	79 Au Gold 196.97	80 Hg Merctry 200.59	$\begin{gathered} 81 \\ \text { Thallum } \\ \text { The } \\ 204.38 \end{gathered}$	$\begin{gathered} 82 \\ \text { Lead } \\ 207.20 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ \text { Blenuth } \\ 20898 \end{gathered}$			
${ }_{\substack{87 \\ \text { Frardum } \\ 223.02}}$	$\underbrace{}_{\substack{88 \\ \text { Radamm } \\ \text { Radine } \\ 226.03}}$	$89-103$ Actindes	104 Rf matherfondian [261]	105 Db Dubnium [262]	$\underset{\substack{106 \\ \text { Seaboguvm } \\ \text { [266] }}}{ }$	107 Bohrium [264]	$\underset{\substack{108 \\ \text { Haxsium } \\[269]}}{\mathrm{Hs}}$	109 Mt Meitneriam [268]	$\stackrel{\substack{\text { Demitatiom } \\ \text { D269] }}}{110}$		$\underset{\substack{\text { copernicum } \\[277]}}{112}$	$\bigcup_{\substack{113 \\ \text { Ununttivm } \\ \text { unknown }}}$	114	115 Uup unappenian unknown	$\begin{gathered} 116 \\ \text { LV } \mathbf{L} \\ \text { Livermorium } \\ {[298]} \end{gathered}$	$\begin{aligned} & 117 \\ & \text { UnSS } \\ & \text { Unk phow } \\ & \text { unk } \end{aligned}$	Uuo Ununoctiom unknown

Alkali Metad	Allasine Earth	Transition Metal	Basic Metal	Serrimetal	Nonmetal	Halogen	Noble Gas	Lanthanide	Actinide	-301e

Calculating the MW

MW = The sum of the atomic weight of atoms in a molecule ($\mathrm{g} /$ mole)

Element	Atomic weight
Ca	40
H	1
Cl	35
K	39
Na	23

- $\mathrm{HCl}=1+35=36 \mathrm{~g} / \mathrm{mole}$
- $\mathrm{K}_{3} \mathrm{Cl}_{2}=(39 \times 3)+(35 \times 2)=117+70=$ $187 \mathrm{~g} / \mathrm{mole}$

Calculating the MW
Calculate the amount of KNO_{3} (Potassium Nitrate) required to prepare 500 ml of $0.5 \mathrm{~mol} / \mathrm{L}$ concentration.
$1^{\text {st }}$ Calculate the MW of KNO_{3}

Element	Atomic weight
K	39
N	14
O	16

$39+14+(16 \times 3)=39+14+48=101 \mathrm{~g} / \mathrm{mol}$

Molar solutions

Calculate the amount (g) of KNO_{3} (Potassium Nitrate) required to prepare 500 ml of $0.5 \mathrm{~mol} / \mathrm{L}$ concentration.
$M W=101 \mathrm{~g} / \mathrm{mol}$
$2^{\text {nd }}$: Convert 500 ml to $\mathrm{L}=0.5 \mathrm{~L}$
$\mathrm{g}=$ specific $\mathrm{L} \times$ desired molarity $\times \mathrm{MW}$
$\mathrm{g}=0.5 \mathrm{~L} \times 0.5 \mathrm{~mol} / \mathrm{L} \times 101 \mathrm{~g} / \mathrm{mol}$
$\mathrm{g}=25.25 \mathrm{~g}$

\% Solutions

\% concentration \times volume needed $=$ mass of reagent to use Dry reagents (g / ml)
If you want to make 200 ml of $3 \% \mathrm{NaCl}$.
Convert 3% to a decimal $=\frac{3}{100}=0.03 \mathrm{~g} / \mathrm{ml}$
$0.03 \times 200 \mathrm{ml}=6 \mathrm{~g}$
So, use 6 g in 200 ml water

\% Solutions

\% concentration x volume needed $=$ mass of reagent to use

Liquid reagents ($\mathrm{ml} / \mathrm{ml}$)
If you want to make 2 L of 70% Acetone.
Convert 70% to a decimal $=\frac{70}{100}=0.70 \mathrm{ml} / \mathrm{ml}$
Convert 2L to $\mathrm{ml}=2000 \mathrm{ml}$
$0.70 \mathrm{ml} / \mathrm{ml} \times 2000 \mathrm{ml}=1400 \mathrm{ml}$
So, use 1400 ml Acetone with 600 ml water $(2000 \mathrm{ml}$ total volume)

Mean or Average

= is the sum of all elements of a set divided by the number of elements in the set

Mean $=\frac{\text { sum of elements in the set }}{\text { number of elements }}$
The table below shows the daily phlebotomy collects in ESC and Emergency Department (ED)

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
ESC	7	9	6	8	7	2	3
ED	45	50	49	46	52	47	48

Mean or Average

The table below shows the daily phlebotomy collects in ESC and Emergency Department (ED)

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
ESC	7	9	6	8	7	2	3
ED	45	50	49	46	52	47	48

Calculate the mean collects in ESC for the week.
$7+9+6+8+7+2+3=42$ (sum of elements in the set)
7 (number of elements in the set)
Mean $=42 \div 7=6$

Median

= is the middle value of a set.

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
ESC	7	9	6	8	7	2	3
ED	45	50	49	46	52	47	48

Calculate the median collects in ED for the week.
Reorder the data set (Odd number of data)

ED	45	46	47	48	49	50	52

Median $=48$

Median

= is the middle value of a set.

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
ESC	7	9	6	8	7	2	3
ED	45	50	49	46	52	47	48

Calculate the median collects in ED from Mon to Sat
Reorder the data set (Even number of data)

ED	45	46	47	49	50	52

Median $=\frac{47+49}{2}=\frac{96}{2}=96 \div 2=48$
Median $=48$

Mode

$=$ is the element that occurs the most often

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
ESC	7	9	6	8	7	2	3
ED	45	50	49	46	52	47	48

What is the mode collects in ESC for the week.
Mode $=7$

Standard Deviation (σ)
 = is a measure of the dispersion or variation of a set of data values from its mean

Standard Deviation $(\sigma)=\sqrt{\text { Variance }}$

Calculating the Variance

To calculate the variance:

1. Work out the mean
2. For each number set, subtract the mean and then square the result
3. Then work out the mean or average of the squared differences

Calculating the Variance

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
ESC	7	9	6	8	7	2	3

$7+9+6+8+7+2+3=42$ (sum of elements in the set) 7 (number of elements in the set) Mean $=42 \div 7=6$
2. $7-6=1,9-6=3,6-6=0,8-6=2,7-6=1,2-6=-4,3-6=-3$

1^{2},	3^{2},	0^{2},	2^{2},	1^{2},	4^{2},	3^{2}
1,	9,	0,	4,	1,	16,	9

$$
\begin{gathered}
1+9+0+4+1+16+9=40 \\
40 \div 7=5.714
\end{gathered}
$$

Calculating the Standard Deviation (σ)
Variance $=5.714$
Standard Deviation $(\sigma)=\sqrt{\text { Variance }}$ $\sigma=\sqrt{5.714}$
$\sigma=2.39$
Lower SD $=6-2.39=3.61$
Upper SD $=6+2.39=8.39$

Plot on a Levy Jennings graph

ESC phlebotomy Collects

$\sigma=2.39$
Lower 1 SD = 6-2.39 = 3.61
Upper 1 SD $=6+2.39=8.39$

Levy Jennings Graph

Date	\% Concentration
$15 / 06 / 16$	33.3
$16 / 06 / 16$	35.2
$17 / 06 / 16$	37.8
$18 / 06 / 16$	31.2
$19 / 06 / 16$	35
$20 / 06 / 16$	30.6
$21 / 06 / 16$	31.2

Mean = 34
SD $=1.2$

Levy Jennings Graph
 \% Concentration

References

- Abacus.bates.edu > biology > Resources
- Mathsisfun.com
- Chemistry.about.com
- Math-aids.com

