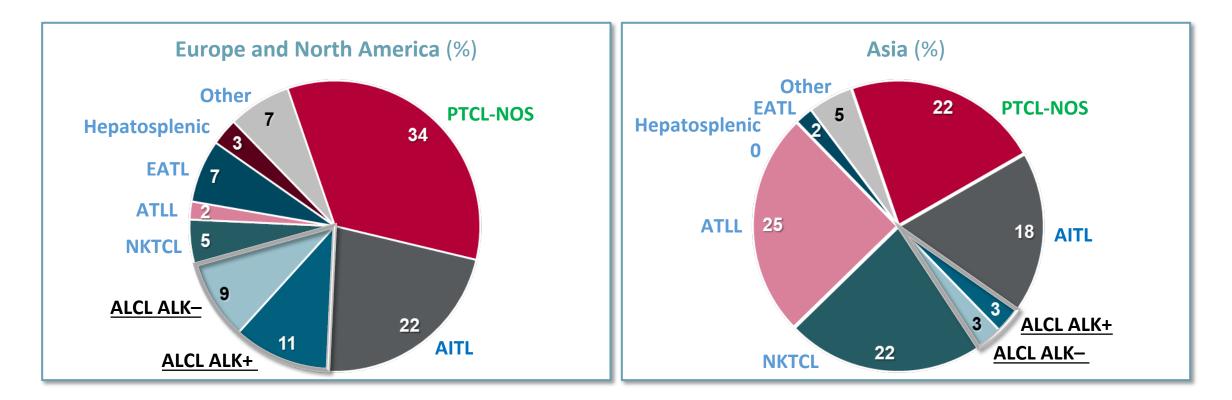
Managing patients with T cell Lymphoma: ongoing challenges

Kate Cwynarski Consultant Haematologist Department of Haematology, UCLH, London Honorary Associate Professor UCL

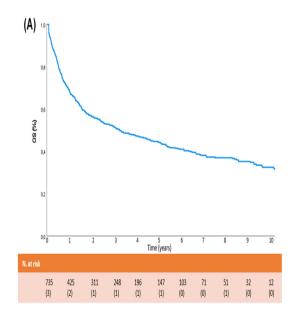
Chair UK T cell Lymphoma Group

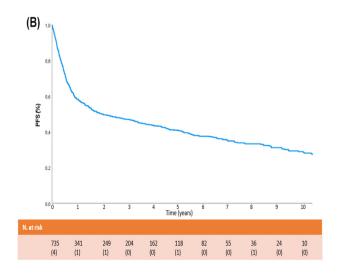


Disclosures

- Consulting/Advisory Role: Roche, Takeda, Celgene, Atara, Gilead, KITE, Janssen, Incyte, Abbvie, Sobi
- Speakers' Bureau: Roche, Takeda, KITE, Gilead,
- Conferences/Travel support: Roche, Takeda, KITE, Janssen

Distribution of Major T-cell and NK-cell Neoplasms by Geographic Region


PTCL: UK ~1400 patients/year



AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; ALK anaplastic lymphoma kinase; ATLL, adult T-cell leukemia / lymphoma; EATL, enteropathy-associated T-cell lymphoma; NHL, non-Hodgkin lymphoma; NK, natural killer; NKTCL, natural killer / T-cell lymphoma; PTCL-NOS, peripheral T-cell lymphoma - not otherwise specified.

1. Hildyard CAT, et al. Clin Med Insights Blood Disord. 2017;10:1179545X17705863.

The majority of patients with PTCL will relapse

Subtype	C	S	PFS		
	<mark>5 year</mark>	10 year	<mark>5 year</mark>	10 year	
	(95% Cl)	(95% CI)	(95% Cl)	(95% Cl)	
PTCL-NOS	<mark>31</mark>	<mark>23</mark>	<mark>26</mark>	<mark>18</mark>	
	(26–36)	(18–28)	(17–35)	(9–27)	
AITL	<mark>44</mark>	<mark>31</mark>	<mark>39</mark>	<mark>24</mark>	
	(31–57)	(26–36)	(33–45)	(14–34)	
NK TCL	<mark>45</mark>	<mark>32</mark>	<mark>40</mark>	<mark>28</mark>	
	(37–53)	(23–41)	(32–48)	(20–36)	
ALCL, ALK–	<mark>49</mark>	40	<mark>42</mark>	<mark>36</mark>	
	(37–61)	(34–46)	(33–51)	(29–43)	
ALCL, ALK+	<mark>79</mark>	<mark>69</mark>	71	<mark>63</mark>	
	(65–93)	(62–76)	(60–82)	(53–73)	

Civallero M et al, International Prospective T-cell Project. Br J Haem 2024

Is there a chemotherapy regimen 'better' than CHOP?

Strategies to improve induction efficacy in mature T-cell lymphomas

CHOP VS GEM-P	NEGATIVE
CHOP VS CMED	INCONCLUSIVE

DA-EPOCH SMALL PTS N°

CHOP + X STRATEGY

CHOP VS CHP-BV

CHOP VS CHOP + ALEMTUZUMAB

CHOP VS CHOP + HDACi

CHOP VS CHOP + DMAs

CHOP VS CHOP + DUVELISIB

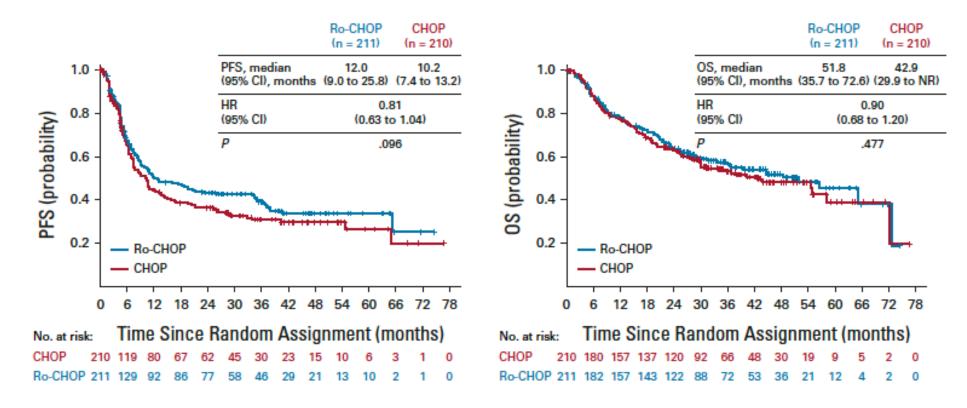
CHOP + PRALATREXATE

CHOP + BORTEZOMIB

CHOP + LENALIDOMIDE

NOVEL NON-CHEMO BACKBONES

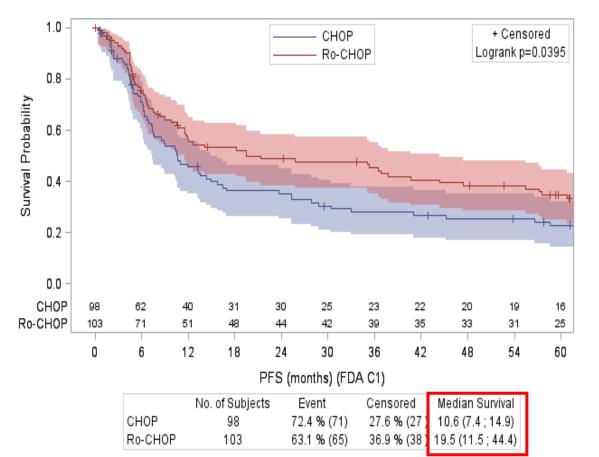
Demethylating agents (DMAs and HDACi-BASED REGIMENS IN THF-NTCL

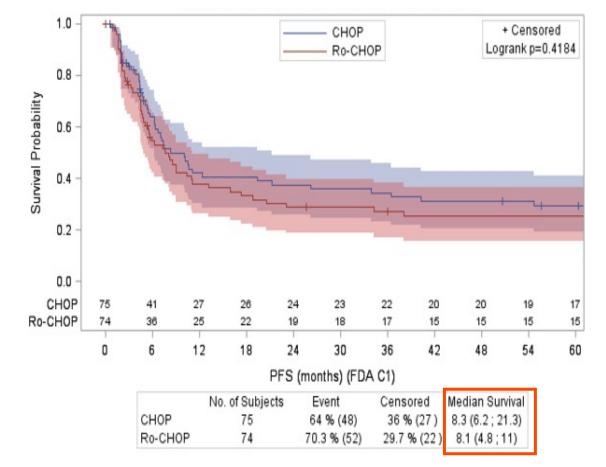

Avilés A. Med Oncol, 2008; Maeda Y. Haematologica, 2017; Gleeson M. Lancet Haematol, 2018

Romidepsin Plus CHOP Versus CHOP in Patients With Previously Untreated Peripheral T-Cell Lymphoma: Results of the Ro-CHOP Phase III Study (Conducted by LYSA)

Similar outcome after CHOP +/- Romidepsin in PTCL-NOS

Emmanuel Bachy, MD, PhD^{1,2}; Vincent Camus, MD³; Catherine Thieblemont, MD, PhD⁴; David Sibon, MD, PhD⁵;


J Clin Oncol 40:242-251. © 2021 by American Society of Clinical Oncology


98 centres from 9 countries in Europe, Asia, and Australia.

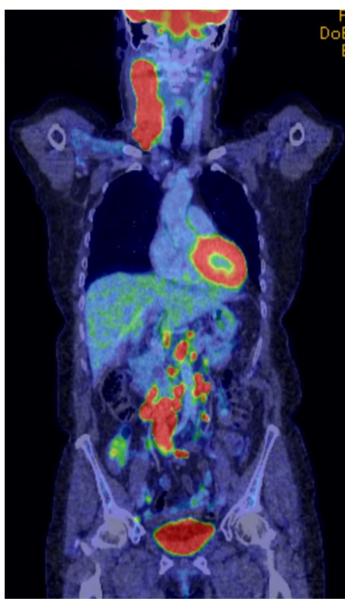
Superior PFS in patients with PTCL-TFH vs patients with non-TFH diagnosis

PTCL-TFH

PTCL non-TFH

Camus V et al, JCO 2024

Is there a chemotherapy regimen 'better' than CHOP?

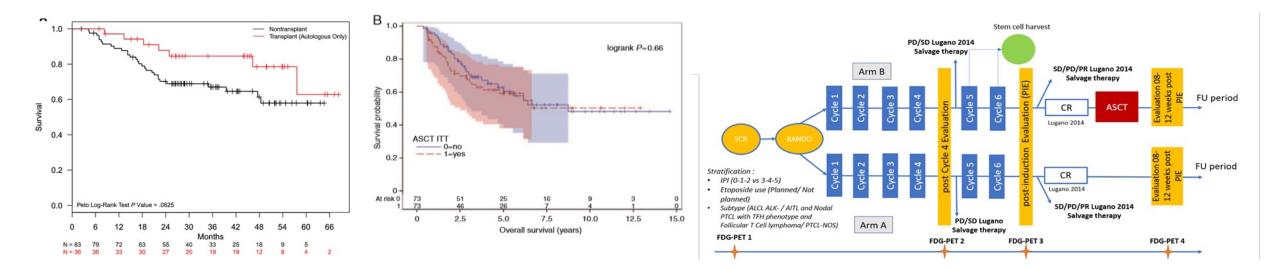

For ALL: NO

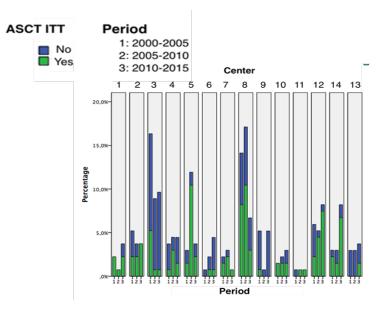
but

Can understanding biology identify new therapeutic targets?

Patient management Case 1

61 years Angioimmunoblastic/TFH T-cell lymphoma Rash/fatigue/widespread LN April 2017

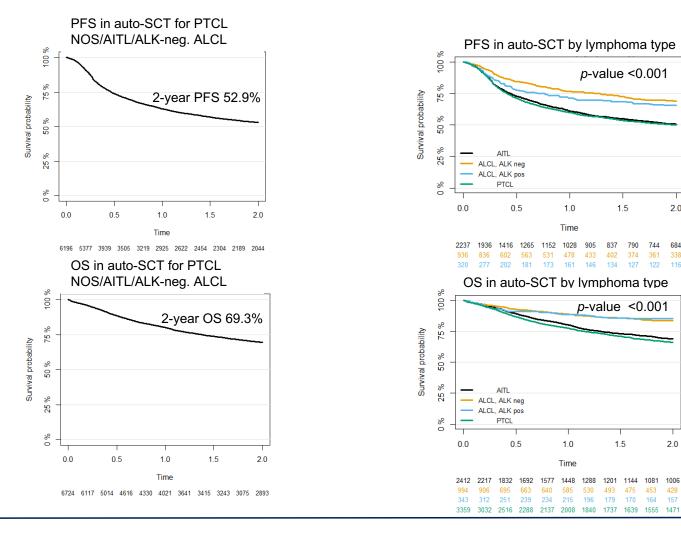



April 2017- Staging PET

Are you planning to perform ASCT in CR1?

- A Definitely 'YES'
- B Discuss 'YES'
- C Undecided
- D Discuss 'NO'
- E Definitely 'NO'

Is there a role for consolidation auto-SCT in CR1?


- Widely adopted
- Conflicting prospective and retrospective data
- No randomised data
- Key determinant may be induction response rather than ASCT itself

UPDATED ANALYSIS OF THE EBMT LYMPHOMA WORKING PARTY Different outcomes of major T-cell lymphoma entities following auto-SCT Münster

auto-SCT n=7099

PTCLNOS 3359 AITL 2412 ALK-ALCL 994 ALK+ALCL 343

2-year PFS:	
ALCL,ALK-neg	. 69%
ALCL, ALK-pos	. 65.5%
AITL	50.7%
PTCL NOS	50.1%

2.0

2-year OS: ALCL, ALK-pos. 85.3% ALCL, ALK-neg. 83.8% AITL 68.9% PTCL NOS 66.0%

Shumilov E et al, EHA 2024

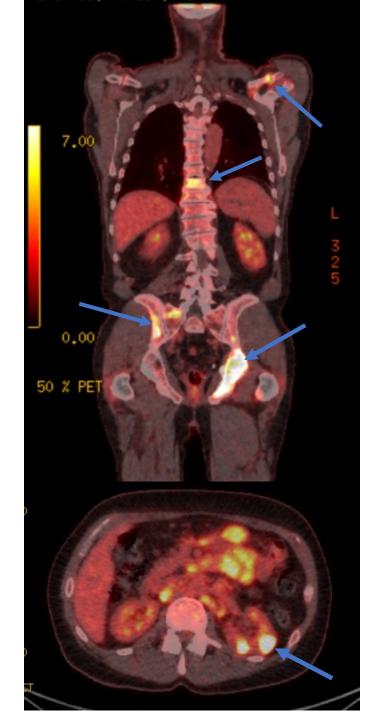
Different relapse incidence (RI) and similar non-relapse mortality (NRM) in major T-cell lymphoma entities after auto-SCT

EBMT

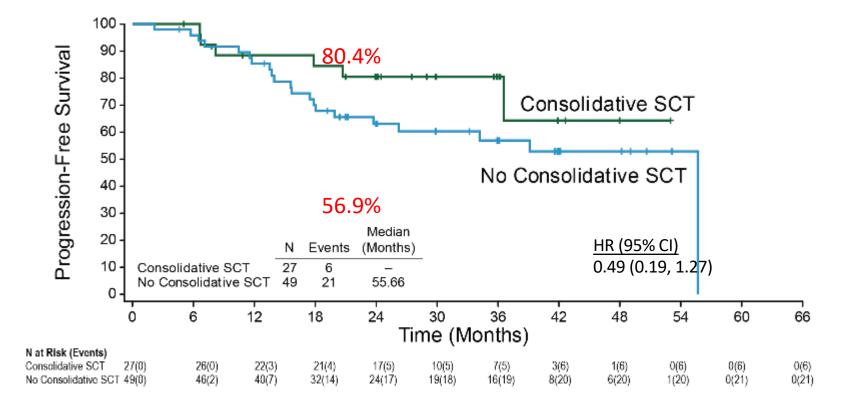
Is there a role for consolidation transplant in PTCL?

- There are no randomized clinical trials
 - Although LYSA group are conducting a prospective randomized trial
- There is retrospective evidence *for* and *against*.
- There are few prospective trials, with diverse subtype inclusion.
- The relapse risk remains high with CHOP/CHOP-like chemotherapy alone
 - thus it is *considered* in most subtypes (with the exception of low IPI ALK⁺ ALCL)

Fox et al, Guidelines for the management of mature T- and natural killer-cell lymphomas. BSH Guideline 2022

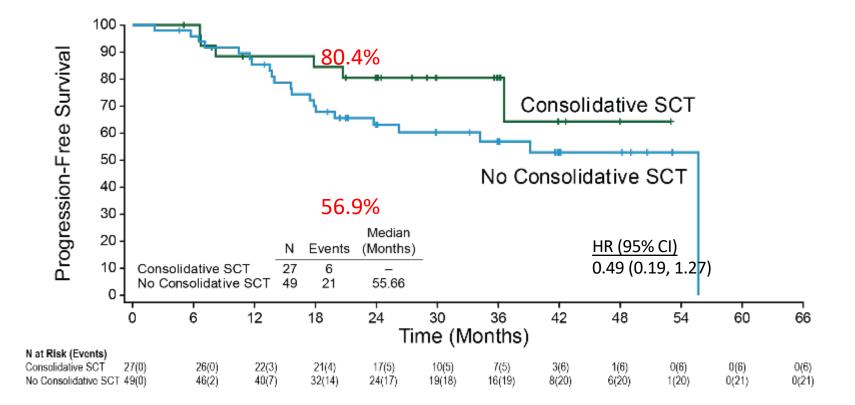

Am I planning to perform ASCT in CR1?

- A Definitely 'YES'
- B Discuss 'YES'
- C Undecided
- D Discuss 'NO'
- E Definitely 'NO'


Case 2

42 year old female Fevers, nighty sweats, bony pain PET: Widespread bony involvement and left renal mass Stage IVB ALK –ve ALCL

- PS=2, LDH 890, 2 extranodal sites
- No significant co-morbidity
- BV-CHP therapy planned with curative intent
- Do we consider ASCT in CR1 in ALK negative ALCL?


Consolidative SCT After BV-CHP in ALK–ALCL Patients? Focusing on patients in CR at EOT in ECHELON-2 trial

ITT – Yes All: n=50 (44%) Asia: 2/15 (**13%**) Non-Asia: 48/98 (**49%**)

Savage et al, Blood Advances 2022

Consolidative SCT After BV-CHP in ALK–ALCL Patients? Focusing on patients in CR at EOT in ECHELON-2 trial

ITT – Yes All: n=50 (44%) Asia: 2/15 (13%) Non-Asia: 48/98 (49%)

Only 9% of ALCL (n=214) patients proceeded to ASCT consolidation Martinez-Calle et al, Adv Ther. 2021

Savage et al, Blood Advances 2022

Case 2

42 year old female Fevers, nighty sweats, bony pain PET: Widespread bony involvement and left renal mass Stage IVB ALK –ve ALCL

- PS=2, LDH 890, 2 extranodal sites
- No significant co-morbidity
- 6 x BV-CHP completed
- BEAM ASCT
- Remains in complete metabolic remission 5 years

UK BSH Guideline Recommendation 2022

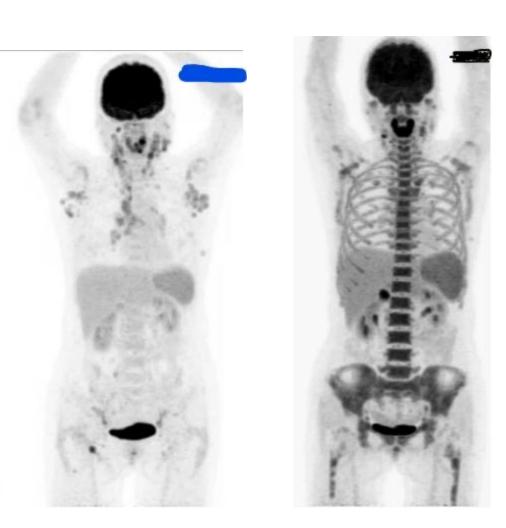
Consider BEAM ASCT in CR1:

ALK- ALCL

or

ALK+ ALCL with high -risk features $IPI \ge 2$ +/age >40 years

Relapsed ALCL: Brentuximab (or chemo) with aim of allo-SCT (or ASCT)


Fox C et al, Br J Haematol 2022

Patient management Case 1

61 years

Angioimmunoblastic/TFH T-cell lymphoma

- Rash/fatigue/widespread LN April 2017
- PR to 4# CHOP
- PD after 6# CHOP Dec 2017

April 2017-Staging PET

PRE CHOP

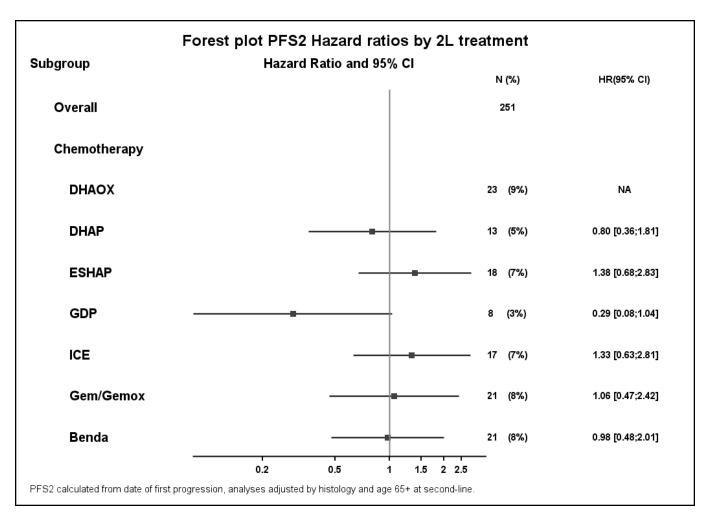
December 2017-EOT PET

POST CHOP

Are you planning to perform allo-SCT in CR2?

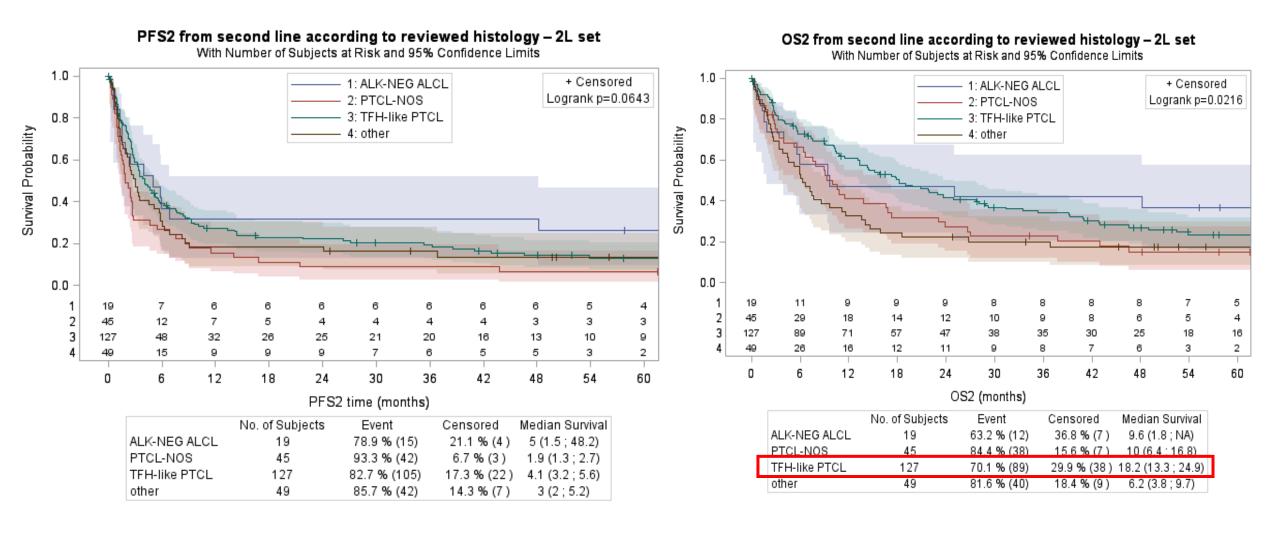
- A Definitely 'YES'
- B Discuss 'YES'
- C Undecided
- D Discuss 'NO'
- E Definitely 'NO'

MAJORITY OF PATIENTS WITH TCL WILL RELAPSE Ro-CHOP study (n=421): Heterogeneity of 2nd line treatments


	2L Set		Other 21 threathness to durin in interned
	N=	251	Other 2L treatment administered
Chemotherapy			
DHAOX	23	(9.2%)	
DHAP	13	(5.2%)	Brentuximab-vedotin single
ESHAP	18	(7.2%)	Romidepsin
GDP	8	(3.2%)	Azacytidine
ICE	17	(6.8%)	Bendamustine –cytarak GEMOX- bendamustir
Gemcitabine/Gemox	21	(8.4%)	Ifosfamide-VP16
Bendamustine	21	(8.4%)	IVOX
Other	130	(51.8%)	Methotrexate Lenalidomide
Brentuximab Vedotin	31	(12.4%)	Brentuximab-vedotin-nivo
(in combination with 2L		(,	GEMOX-nivolumab
chemotherapy)			R-GEMOX
Transplant type			Radiotherapy
Allogeneic	14	(5.6%)	Cyclophosphamide
Autologous	21	(8.4%)	Cyclophosphamide - VI

Other 2L treatment administered to ≥2 patients	Treatment arm		2L set
	Ro-CHOP N=115	CHOP N=136	N=251
Brentuximab-vedotin single-agent	5 (4.3%)	3 (2.2%)	8 (3.2%)
Romidepsin	0 (0%)	7 (5.1%)	7 (2.8%)
Azacytidine	3 (2.6%)	2 (1.5%)	5 (2%)
Bendamustine –cytarabine	3 (2.6%)	0 (0%)	3 (1.2%)
GEMOX- bendamustine	1 (0.9%)	2 (1.5%)	3 (1.2%)
Ifosfamide-VP16	2 (1.7%)	1 (0.7%)	3 (1.2%)
IVOX	1 (0.9%)	2 (1.5%)	3 (1.2%)
Methotrexate	1 (0.9%)	2 (1.5%)	3 (1.2%)
Lenalidomide	2 (1.7%)	1 (0.7%)	3 (1.2%)
Brentuximab-vedotin-nivolumab	1 (0.9%)	1 (0.7%)	2 (0.8%)
GEMOX-nivolumab	0 (0%)	2 (1.5%)	2 (0.8%)
R-GEMOX	1 (0.9%)	1 (0.7%)	2 (0.8%)
Radiotherapy	1 (0.9%)	1 (0.7%)	2 (0.8%)
Cyclophosphamide	1 (0.9%)	1 (0.7%)	2 (0.8%)
Cyclophosphamide - VP16	0 (0%)	2 (1.5%)	2 (0.8%)

GDP: gemcitabine, dexamethasone, cisplatin; ESHAP: etoposide, methylprednisolone, high-dose cytarabine and cisplatin; DHAP: etoposide, methylprednisolone, high-dose cytarabine and cisplatin; ICE: Ifosfamide, carboplatin, etoposide; GEMOX: gemcitabine, oxaliplatine; IVOX: ifosfamide, etoposide, oxaliplatin.


Median age 66 yrs

PFS2 according to main 2L approaches: We will continue to use GDP

GDP: gemcitabine, dexamethasone, cisplatin; ESHAP: etoposide, methylprednisolone, high-dose cytarabine and cisplatin; DHAP: etoposide, methylprednisolone, high-dose cytarabine and cisplatin; ICE: Ifosfamide, carboplatin, etoposide; GEMOX: gemcitabine, oxaliplatine; IVOX: ifosfamide, etoposide, oxaliplatin; Benda: bendamustine single agent; Gem: gemcitabine **Camus V....Bachy E ICML 2023**

PFS2/OS2: PFS and OS after the first progression and 2nd line treatment by histological subtype

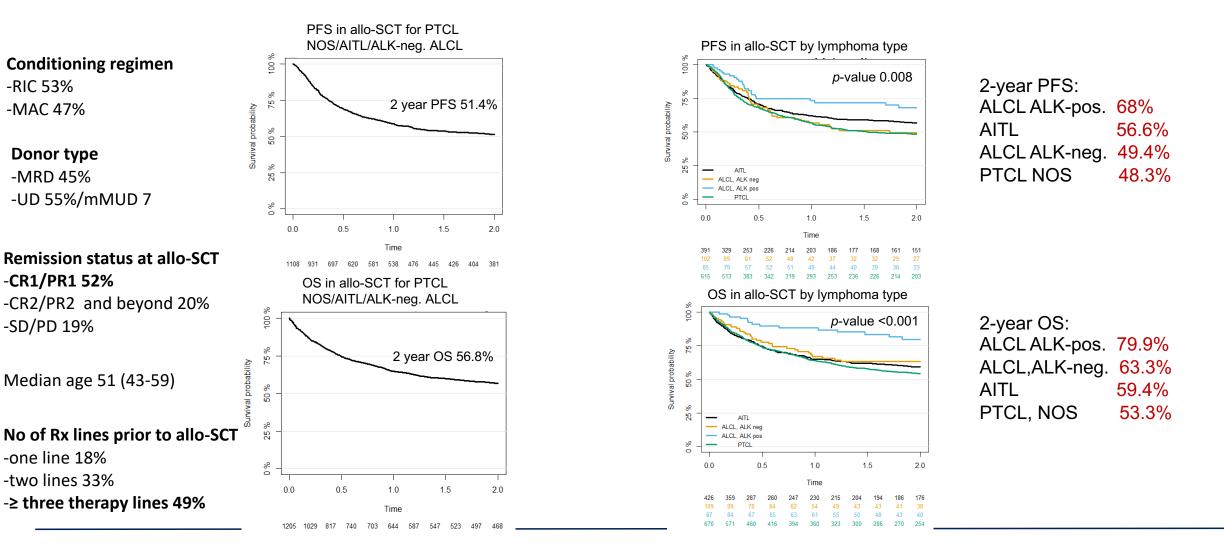
Median PFS2: 3.3 months

Median OS2: 11.5 months

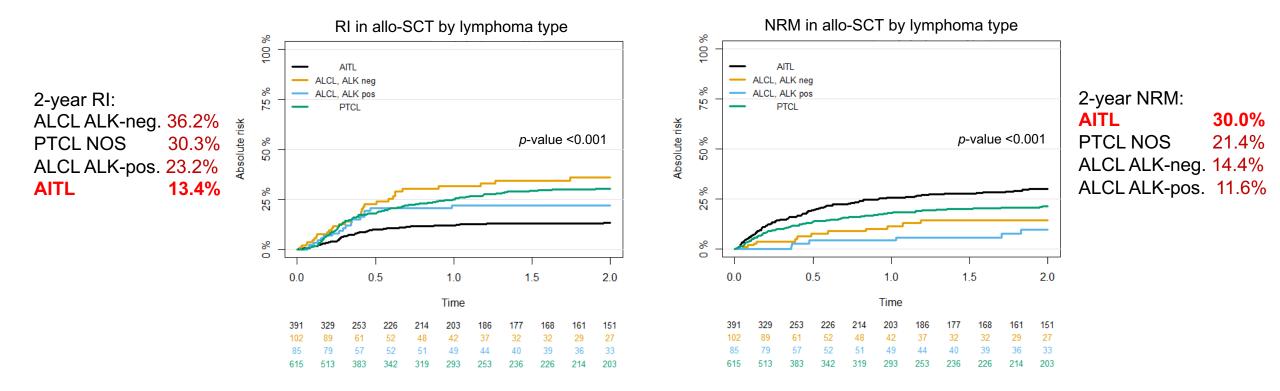
PFS2 according to transplant status

			Tran	splant type				
		Allo	Auto		None		2L set	
		N=14	N=21		N=216		N=251	
Age at enrollment (years) (CRF)								
Median		52.5	5	55.0	66.0		65.0	
Min ; Max		28 ; 68	33	3;70	35	; 81	28;81	
Sex								
Male	11	(78.6%)	13	(61.9%)	136	(63.0%)	160	(63.7%)
Ann Arbor Stage								
III-IV	12	(85.7%)	19	(90.5%)	199	(92.1%)	230	(91.6%)
IPI group								
>=2	11	(78.6%)	18	(85.7%)	192	(88.9%)	221	(88.0%)
Histological diagnosis in class (reviewed)								
PTCL-NOS	1	(7.1%)	3	(14.3%)	41	(19.0%)	45	(17.9%)
TFH-like PTCL	8	(57.1%)	9	(42.9%)	110	(50.9%)	127	(50.6%)
ALK-NEG ALCL	3	(21.4%)	2	(9.5%)	14	(6.5%)	19	(7.6%)
Other	1	(7.1%)	6	(28.6%)	42	(19.4%)	49	(19.5%)
Missing	1		1		9		11	

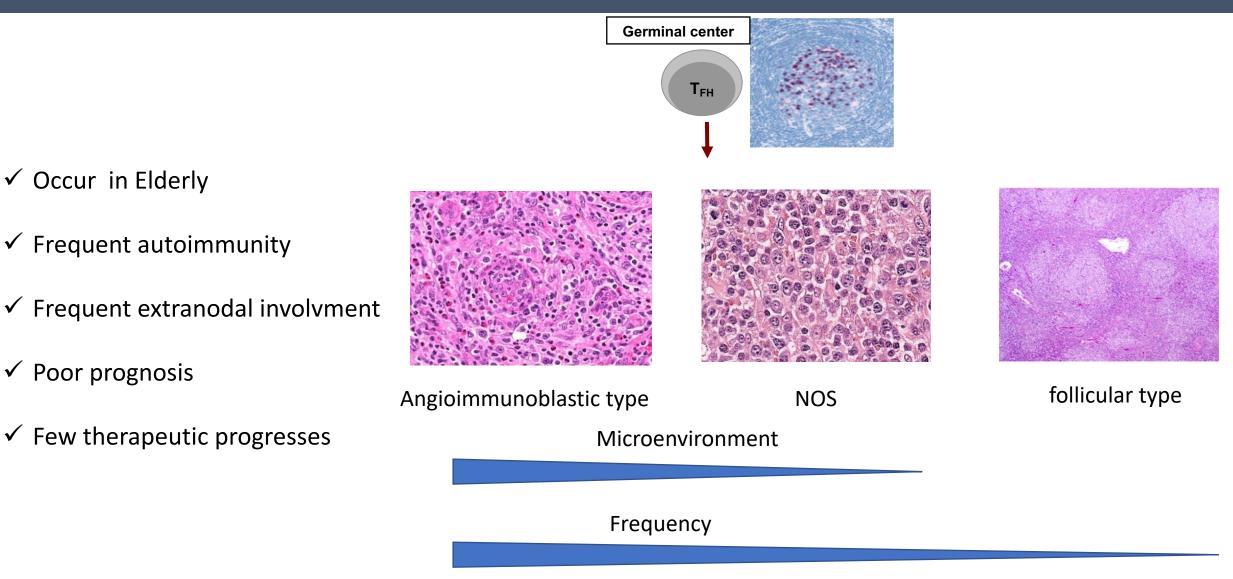
Auto (8%) and allo-SCT (6%) may grant durable remissions in a highly selected subset of patients



Camus V et al, JCO 2024

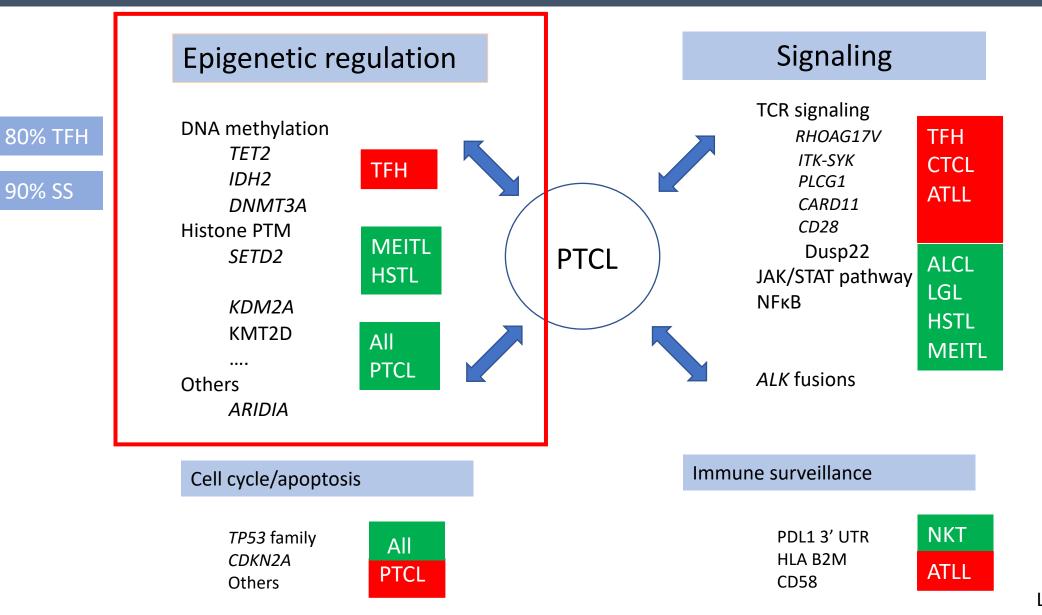

Different outcomes of major T-cell lymphoma entities post-allo-SCT n=1292 (>50% for PTCL-NOS; 1/3 for AITL)

RI and NRM in major T-cell lymphoma entities following allo-SCT


UKM

Münster

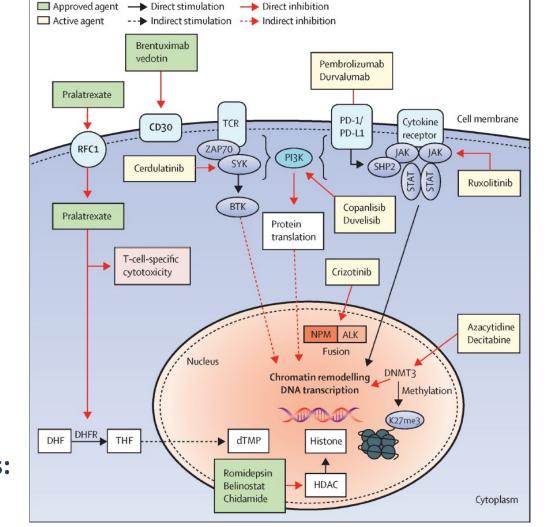
Are you planning to perform allo-SCT in CR2?


- A Definitely 'YES'
- B Discuss 'YES' but manage expectations
- C Undecided
- D Discuss 'NO'
- E Definitely 'NO'

(Nodal) Follicular Helper T-cell lymphomas

Campo *et al*. Blood 2022; Alaggio *et al*. Leukemia 2022

Pathways involved in PTCL oncogenesis


Lemonnier F EHA 2024

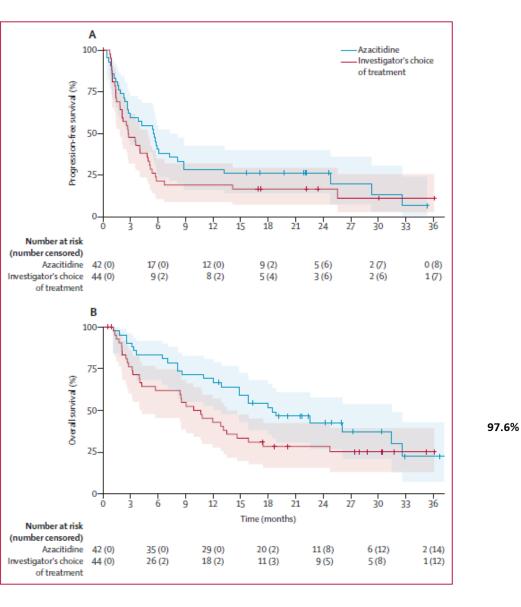
Potentially targetable intracellular signals in PTCL

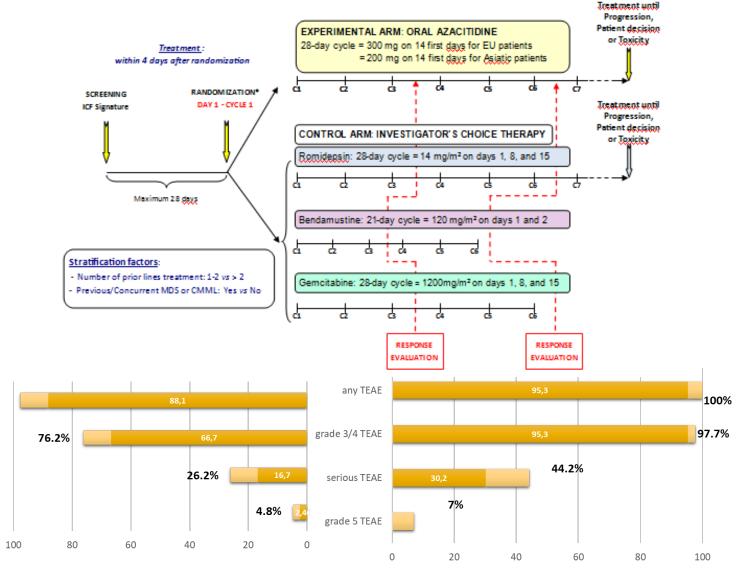
Pi3K Copanlisib Duvelisib **PRIMO trial** Tenalisib Linperlisib **JAK**: Ruxolitinib Golidocitinib **ALK inhibitors:** UK access? Crizotinib Alectinib

EZH1/EZH2 inhibitors:

VALENTINE Valemetostat trial

SYK/(JAK) Cerdulatinib


BCL2: Venetoclax

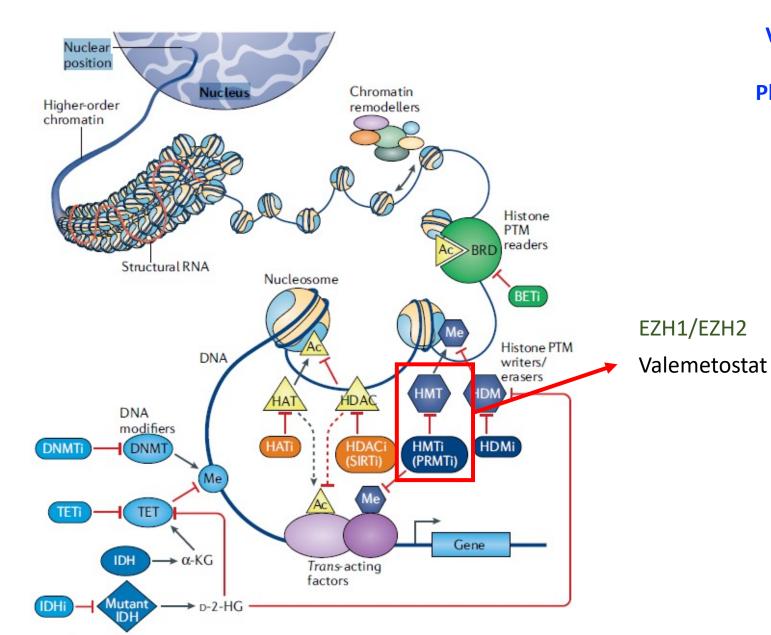

Hypomethylators Azacytidine Trial: ORACLE Decitabine

HDAC: Romidepsin Belinostat Chidamide

Trial: ROMICAR

Hypomethylating agent Azacitidine in R/R TFHL: ORACLE study

Dupuis *et al*. Lancet Haematol. 2024


treatment related any TEAE

Global differences in approval of drugs for relapsed/refractory PTCL

	U.S.(FDA)	Canada (HC)	Europe (EMA)
Pralatrexate	Approved 2009	Approved 2018	Not approved for marketing
Romidepsin	Approved 2012 (withdrawn)*	Approved 2013 (withdrawn)*	Not approved for marketing
Brentuximab Vedotin	Approved 2011 (relapsed ALCL)	Approved 2013 (relapsed ALCL)	Approved 2011 (relapsed ALCL)
Belinostat	Approved July 2014	Withdrawn	Not approved for marketing
Crizotinib	Approved Jan 2021 (ALK- pos, 1-≤21 y)	Not approved	Not approved

* Withdrawn due to negative Ro-CHOP vs CHOP study

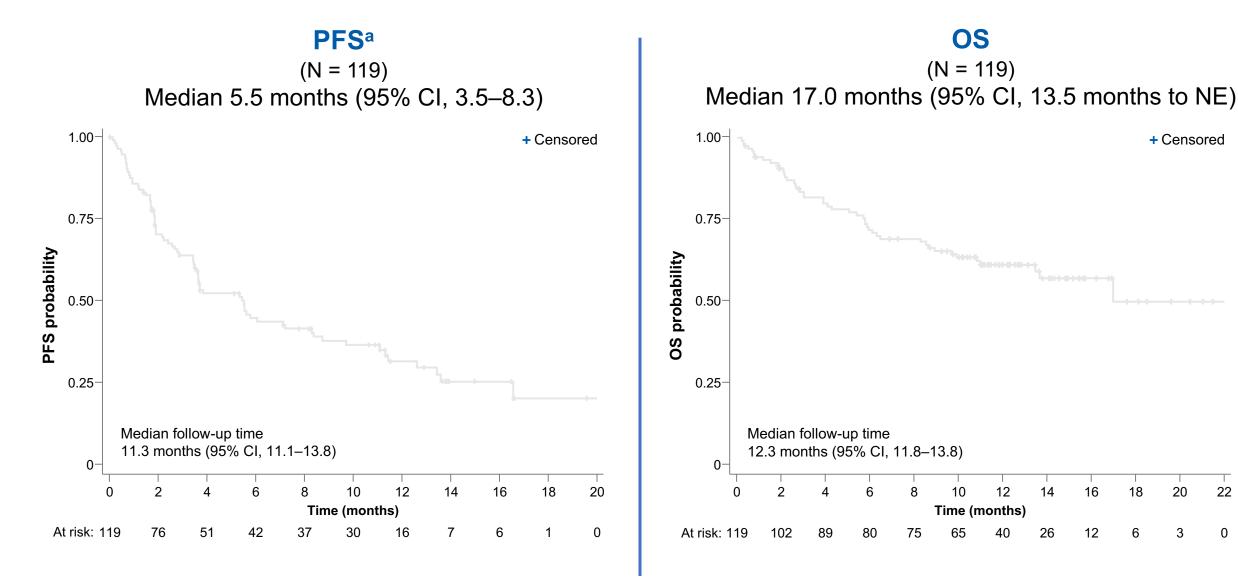
Other epigenetic targeting approach

VALENTINE-PTCL01: global, multicenter, open-label, single-arm, Phase 2 trial of valemetostat in R/R PTCLs

Eligibility Criteria

- ≥ 18 years
- Confirmed PTCL diagnosis (WHO 2016 classification¹)
- ECOG PS score ≤ 2
- ≥ 1 prior line of systemic therapy

Patients with ALCL received prior brentuximab vedotin treatment


R/R PTCL

N = 133 N = 119 with PTCL histology confirmed by central pathology

Valemetostat

200 mg/day Continuous 28-day cycles until PD or unacceptable toxicity

Progression-Free Survival and Overall Survival

Data cutoff: May 5, 2023. ^a PFS evaluated by BICR CT-based assessment.

Zinzani PL et al, Lancet Onc 2024

18

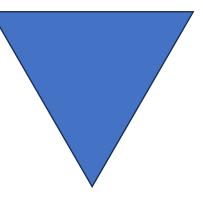
6

20

3

22

0


+ Censored

Pier Luigi Zinzani, et al. EHA 2024 #S247

Moving to combination

Epigenetic targeting drugs

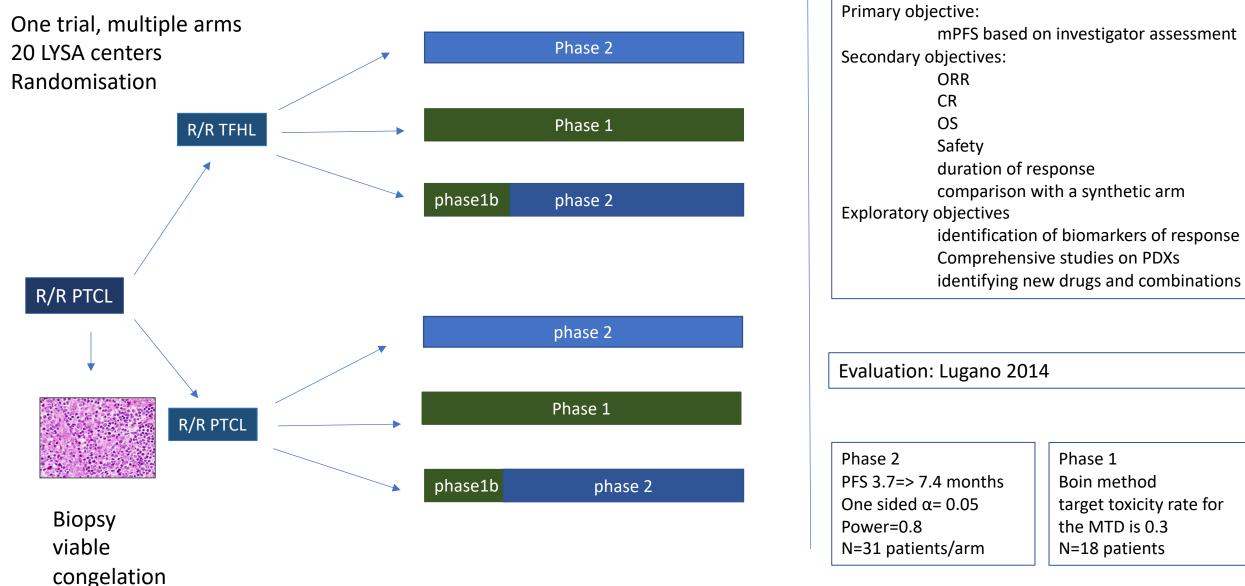
romidepsin azacitdine valemetostat belinostat chidamide others

Signaling targeting drugs

duvelisib cerdulatinib ruxolitinib golidocitinib others

others

cellmod checkpoint inhibitors:anti PD1 chemotherapy brentuximab vedotin others


Moving to combination

Romidepsin+ duvelisib

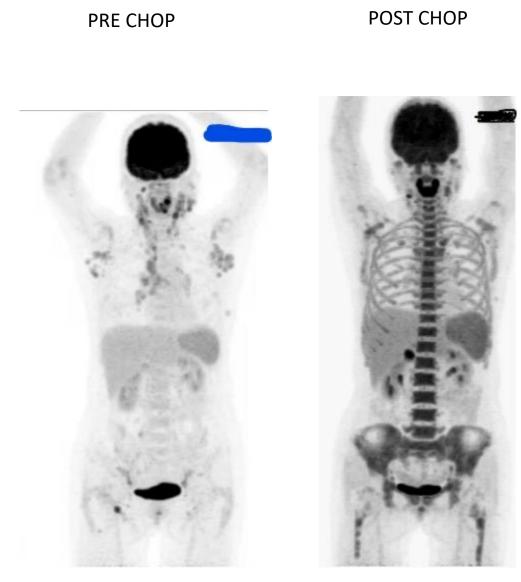
Histology	Treated	Evaluable	ORR N (%)	CR N (%)	Bridged to Allo SCT N (%)
PTCL	55	53	31 (58)	22 (42)	15 (28)
PTCL NOS	20	19	10 (53)	6 (32)	3 (16)
AITL/TFH	19	19	13 (68)	11 (58)	7 (37)
ΡСγδ	3	3	1 (33)	1 (33)	1 (33)
ALCL	3	3	3 (100)	2 (67)	2 (66)
HSTCL	2	2	1 (50)	0	1 (50)
Aggr epidermotropic CD8+	2	2	1 (50)	1 (50)	0
Other TCL	6	5	2 (40)	1 (20)	1 (20)

Planned plaTform trial

(further) Patient management Case 1

Angioimmunoblastic/TFH T-cell lymphoma

- Rash/fatigue/widespread LN April 2017
- PR to 4# CHOP
- PD after 6# CHOP Dec 2017


ROMICAR Jan 2018 to CMR

- Refused allo-SCT
- PD March 2019 (13 months Rx on ROMICAR)

Lenalidamide for 36 months

Valemostat April 2022 for > 18 months

AUTO-4 (TRB1+ve)

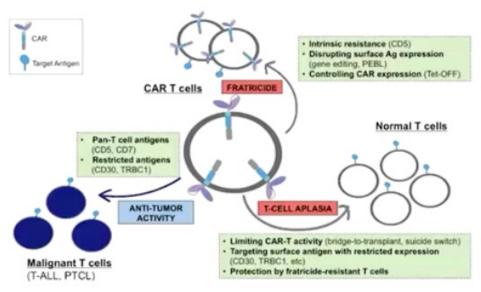
April 2017-Staging PET December 2017-EOT PET

Engaging the immune system to treat PTCLs

Checkpoint inhibitors:

NKTCL, hyperprogressions seen in PTCL

Tumor associated macrophage (TAM) activation:

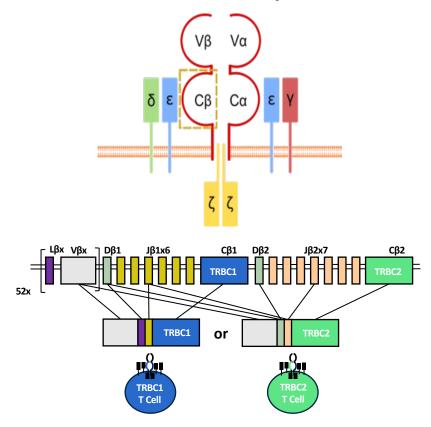

• anti CD47

CAR-T

- Targets: Pan-T(CD5-CD7)/restricted (CD30, TRBC1)
- Fratricide killing
- T-Cell aplasia

Bispecific antibodies

- antiCD30/CD16a (AFM13). NK targeting towards the tumor
- PTCL has not benefited from immunotherapy
- Pan T-cell depletion is highly toxic
- Few/no tumour-specific antigen targets in PTCL



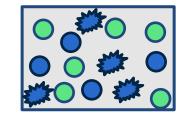
From: Scherer et al. Front Oncol. 2019; 9: 126. doi: 10.3389/fonc.2019.00126

TRBC1 (or TRBC2) as a Target in PTCL

Structure of the T Cell Receptor or TCR

PTCL are clonal and express either TRBC1 or TRBC2

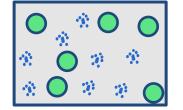
Healthy T Cells


Contain mixture of

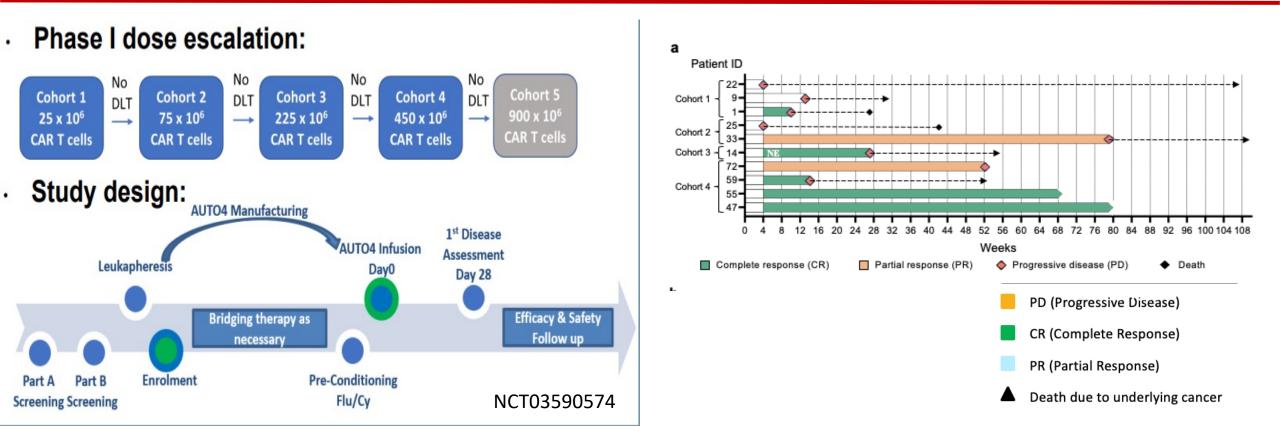
TRBC1+ cells

TRBC1 CAR

• TRBC2+ cells


TRBC1+ T cell lymphoma

TRBC1+ tumour cell


TRBC2+ normal T cells retained

(immunity maintained)

TRBC1+ cells killed (tumour & healthy)

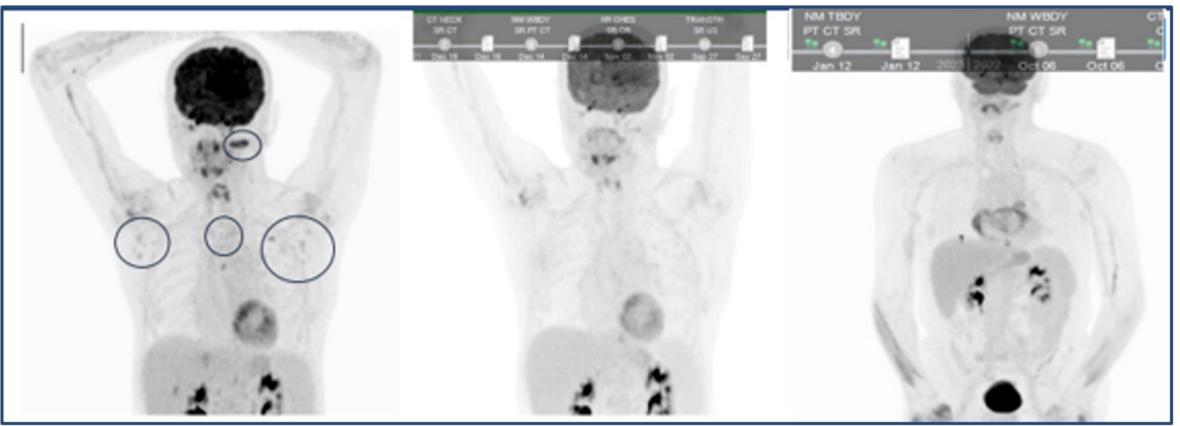
Current Landscape of CAR-T cells for T cell Lymphomas TRBC1 Directed CARs

N=10

Median prior lines = 3 (1-5) Advanced stage = 70% Bridging received = 70% CRS = 40% of pts (25% grade 3) No ICANS

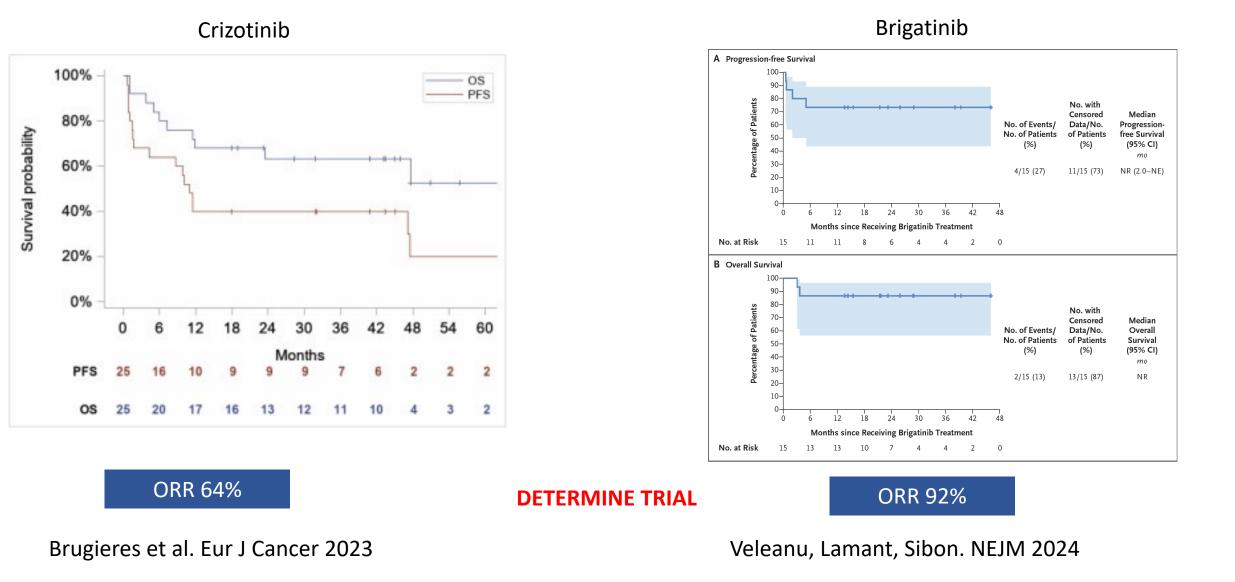
4/4 patients at 450x10⁶ cell dose achieved a response 2/4 remain in CMR beyond 12 months

PET-CT in Responding Patients at 450Mio Cell Dose


Patient 055 (63 y.o. man, AITL)

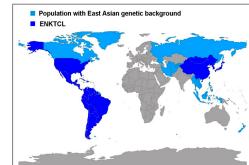
 $\begin{array}{c} \mathsf{CHOP} \rightarrow \mathsf{PD} \\ \mathsf{ICE} \rightarrow \mathsf{PD} \\ \mathsf{Duvelisib} \rightarrow \mathsf{PD} \end{array}$

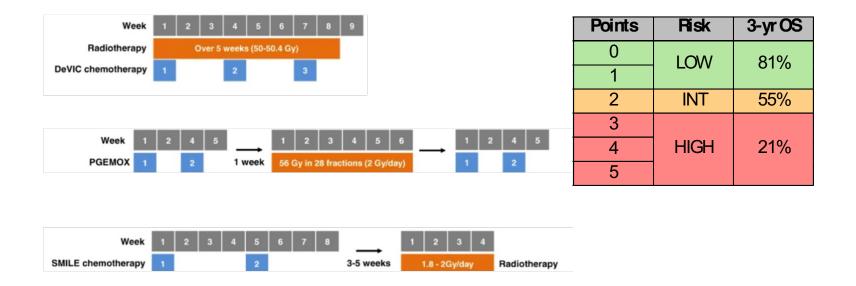
M18 (DS=1)


M1 (DS=2)

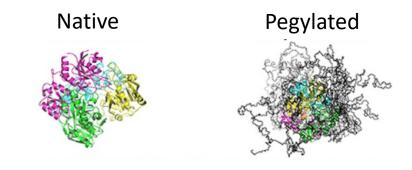
Cwynarski et al. Nature Medicine 2024

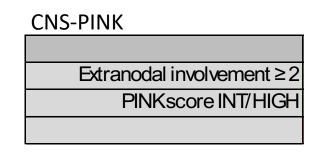
DS, Deauville score


ALK inhibition in ALK+ ALCL


Rarer entities: Extranodal NK/T-cell lymphoma

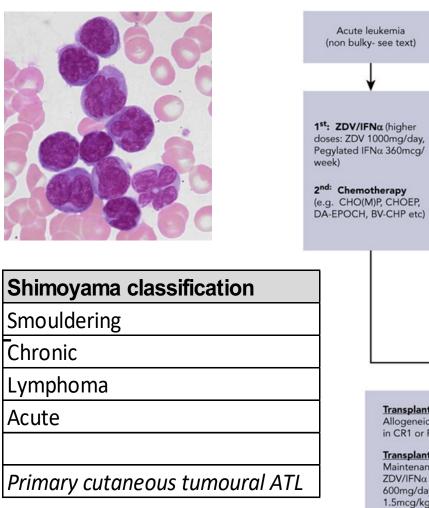
- EBV driven disease
- Staging critical (inc MRI)
- Baseline PINK-E score refines clinical outcomes
- Anthracycline resistance
- Limited stage
 - Combined chemoradiotherapy
 - Early high dose radiotherapy key
 - EBV PCR prognostic

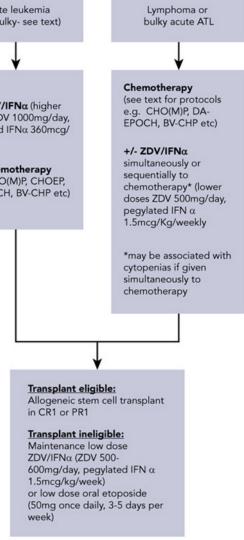



Age > 60 years
Stage III/IV
Non-nasal primary localisation
Distant lymph node involvement
Detectable plasma BV DNA

Extranodal NK/T-cell lymphoma - advanced

- Non-anthracycline platinum-based chemotherapy, +/- asparaginase
- L-asparaginase vs PEG-asparaginase
- Commonly used regimens
 - SMILE
 - DDGP
 - GELOX
 - AspMetDex
- Role of HSCT unclear
 - AlloSCT in CR1 for high-risk patients preferred
- Anti-PD-1/PD-L1 mAbs active

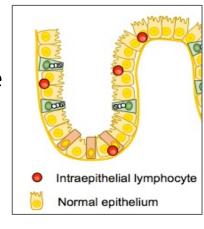




Points	Risk	2-yr CNS relapse		
0	LOW	4.10%		
1		4.1070		
2	HIGH	22.80%		

Adult T-cell leukaemia/lymphoma

- HTLV1 driven disease
- First-degree relatives/partner screening important
 - Involve national HTLV service <u>http://www.htlv.eu/</u>
- Heavily immunocompromised
- Poor clinical outcomes for lymphoma Chronic Lympho
- CHOP +/- AZT/IFN- α
- High CNS risk
- Early alloSCT performed in CR key

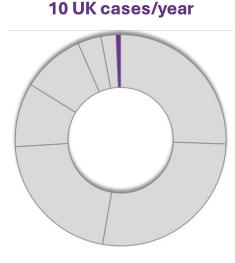


Cook et al Blood 2021 Jan 28;137(4):459-470

https://imagebank.hematology.org/image/63381/adult-tcell-leukemialymphoma-marrow

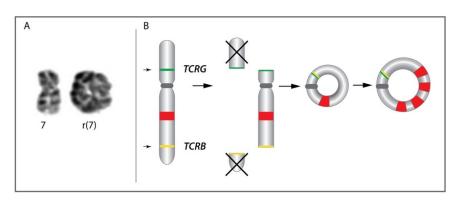

Aggressive Intestinal T-cell lymphoma

- EATL (previously EATL-I)
 - Enteropathy associated
 - Complex relationship with various stages of Coeliac disease
- MEITL (previously EATL-II)
 - No association with enteropathy



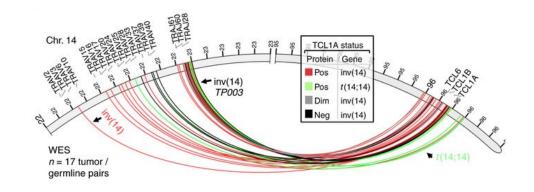
- 50% present with bowel perforation
- Performance status, malabsorption, malnutrition hamper chemo delivery
- Very poor clinical outcomes
- CHOP/CHOP vs SNLG/Newcastle

SNLG	D1	D21	D42	D49	D70	D77	D98	AutoSCT
protocol	СНОР	IVE	MTX	IVE	MTX	IVE	MTX	AutoSCT
n=11								


Hepatosplenic T-cell lymphoma

HSTL~2% PTCL

- Very rare
- Average age older than previously thought
- Case reports: linked with immune suppression
- Invove Liver, spleen and bone marrow
- Median survival 11 months
 - 5-year survival 20%
- Intensive multiagent non-anthracycline-based chemotherapy regimens often used
 - ICE, IVAC
- Aim for allogeneic stem cell transplant where possible


Isochromosome 7q abnormality, Expression $\gamma\delta\text{-TCR}$

T-prolymphocytic leukaemia

- Lymphocytosis, splenomegaly, low volume lymphadenopathy
- Up to 30% are asymptomatic
- 90% show rearrangement *TCL1A* or *MTCP1* locus
- Active T-PLL: IV Alemtuzumab
 - Pentostatin
- Risk of opportunistic infection
 - ACV, septrin, Azole, CMV PCR
- Consider alloSCT in CR1
- Alemtuzumab retreatment possible; recheck sCD52 status

Major criteria	Minor criteria (at least 1 required)
\bullet >5 \times 10 $^9/L$ cells of T-PLL phenotype in peripheral blood or bone marrow	Abnormalities involving chromosome 11 (11q22.3; ATM)
T-cell clonality (by PCR for TRB/TRG, or by flow cytometry)	• Abnormalities in chromosome 8: idic(8)(p11), t(8;8), trisomy 8q
Abnormalities of 14q32 or Xq28 OR expression of <i>TCL1A/B</i> , or MTCP1*	• Abnormalities in chromosome 5, 12, 13, 22, or complex karyotype
	Involvement of T-PLL specific site (eg, splenomegaly, effusions)

* Cases without TCL1A, TCL1B, or MTCP1 rearrangement or their respective overexpression are collected as TCL1-family negative T-PLL.

Conclusions

- R/R PTCL is an area of unmet need
- Innovative Rx approaches inc disease biology/molecular mechanisms
- Novel treatment platforms are urgently required
- The 'one fits all' approach does NOT work in PTCL
- The key for future development in PTCL treatment is:
 - Identify and target the specific subtypes
 - International collaboration

Acknowledgements

Matt Ahearne Christopher Fox Jessica Okosun Jesca Boot Dan Hodson

Gloria Iacoboni Eleni Tholouli Tobias Menne David Irvine

CAR-T teams

UCLH, London, UK VHIO Vall d'Hebron, Spain Manchester Royal Infirmary, UK Freeman Hospital, Newcastle, UK QE Univ Hosp, Glasgow, UK Martin Pule Paul Maciocia Teresa Marafioti Wolfram Brugger P. Lao-Sirieix Mathieu Ferrari Silvia Basilico et al

Autelus

VALL D'HEBRON Institute of Oncology

NHS Manchester University NHS Foundation Trust

NHS

The Newcastle upon Tyne Hospitals NHS Foundation Trust

