

## Animal Selection, Genetics & Genomics to manage ruminant CH<sub>4</sub> emissions:

a coordinated international research network.

G Shackell<sup>1</sup>, H Oddy<sup>2</sup>, N Pickering<sup>1</sup>, J Basarab<sup>3</sup>, K Cammack<sup>4</sup>, Y de Haas<sup>5</sup>, B Hayes<sup>6</sup>, R Hegarty<sup>7</sup>, J Lassen<sup>8</sup>, J McEwan<sup>1</sup>, S Miller<sup>9</sup>, C Pinares-Patiño<sup>1</sup>, M da Silva<sup>10</sup>, P Vercoe<sup>11</sup>, E Wall<sup>12</sup>, A Cookson<sup>1</sup> & ASSGN members <sup>1</sup>AgResearch, New Zealand; <sup>2</sup>DPI, NSW, Australia; <sup>3</sup>Alberta Agriculture and Rural Development, Canada; <sup>4</sup>University of Wyoming, USA; <sup>5</sup>Wageningen UR, Netherlands; <sup>6</sup>DPI, Vic, Australia; <sup>7</sup>The University of New England, Armidale, Australia; <sup>8</sup>Aarhus University, Denmark; <sup>9</sup>University of Guelph, Canada; <sup>10</sup>Embrapa, Brazil;

<sup>11</sup>University of Western Australia; <sup>12</sup>SRUC, Scotland.

## Why an International Network?

| The science behind genetic and genomic technologies requires a significant resource of animals and |
|----------------------------------------------------------------------------------------------------|
| research under different environmental influences.                                                 |

- ☐ The ASGGN will facilitate a coordinated international research effort to achieve progress at a much faster rate than is possible by any of its member countries working alone.
- □ ASGGN membership currently includes scientists from Asia, Australia, Canada, Europe, Ireland, New Zealand, Scandinavia, South America, the United Kingdom and the USA.

## Why Animal Selection, Genetics & Genomics?

- ☐ Animal Selection exploits the genetic variation that exists between animals.
- ☐ Genetic improvement of productivity offers a means of managing CH<sub>4</sub> emission intensity.
- □ Differences between individual animals in CH<sub>4</sub> emissions for the same intake of feed are heritable and can be selected for i.e. a reduction in absolute emissions.
- ☐ Genomic selection allows selection of animals based on their genetic profile, without having to directly measure the specific trait on every animal.
- ☐ Genomic selection for difficult to measure traits, such as CH₄ emissions, offers a way of reducing methane emissions from ruminants as part of existing commercial genetic improvement.
- □ Implementing genomic selection for CH<sub>4</sub> emissions will require that thousands of animals per species are phenotyped and genotyped this will cost less and will be quicker if international parties pool data and resources.

## Describing the host animal CH<sub>4</sub> phenotype

- ☐ Comparisons between species and countries will be facilitated if the phenotype is measured using consistent protocols.
- ☐ Establishing common protocols will enable combining and sharing of data and of genetic parameter estimates.
- ☐ For CH<sub>4</sub> measurement, respiration chambers are the likely calibration "Gold standard".
- ☐ Feed intake measurement will also be a component of calibration.
- ☐ A working party of the ASGGN is reviewing current knowledge in preparation for describing the best way forward.
- ☐ ASGGN also maintains strong linkages with the Rumen Microbial Genomics Network of the GRA.





Contacts:

Dr Hutton Oddy, DPI, NSW, Australia <u>hutton.oddy@dpi.nsw.gov.au</u>

Grant Shackell, AgResearch, New Zealand grant.shackell@agresearch.co.nz





New Zealand Government