
The local limit of proper supercritical percolation is uncountable
as shown by P(the cluster of the origin is G) = 0 for any fixed infinite G
and moreover P(the cluster of the origin is in Gi) = 0, where Gi is a particular partition of

connected subgraphs of the base lattice
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Let us consider bond percolation on Z2, and let C(0,0) be the random variable representing the
isomorphism class of the cluster of the origin. For any rooted graph (G, o) and non-negative integer r, let
(G, o)|r be the rooted graph which is the restriction of (G, o) to the vertices which are at distance at most
r from the root.

Proposition 1. Let C(0,0) be the cluster of the origin in Bernoulli bond percolation with parameter
p ∈ [0, 1). For any infinite rooted graph (G, o) and any non-negative integer r,

P
(
C(0,0)|r+1 ≃ (G, o)|r+1

)
≤ max

{
p,

1√
π

}
P
(
C(0,0)|r ≃ (G, o)|r

)
, (1)

implying
P
(
C(0,0) ≃ (G, o)

)
= 0.

Proof. Let an infinite rooted graph (G, o) and a non-negative integer r be fixed. The upper bound (1) for
P
(
C(0,0)|r+1 ≃ (G, o)|r+1

)
is based on a variant of breadth-first search. We will explore the cluster of the

origin of a percolation sample as follows. Suppose that prior to round s ∈ N, we determined the status
of some edge set Es−1 ⊂ E(Z2), meaning we know exactly which edges in Es−1 are open and which are
closed, while we have no information about the edges in E(Z2) \Es−1. We also determined all the vertices
Vs ⊂ V (Z2) which are, in the graph distance of the percolated grid, at distance at most s from the origin.
It is important to note that this is a different distance than the graph distance in the original grid.

To start with, V0 = {(0, 0)} and E0 = ∅. We will denote by V=s the subset of the vertices of Vs which
are at distance exactly s from (0, 0) in the percolated grid. In round s, we uncover all the edges whose one
endpoint is in V=s and the other in V (Z2) \ Vs. Then Es+1 is the set of all the edges incident to a vertex
in Vs without those whose both endpoints are in V=i for some i ∈ [s]. In fact, since Z2 contains no odd
cycles, there can be no edges with both endpoints in V=i anyway, but we spell out the general approach
because it can be applied to non-bipartite lattices just as successfully.

Let us suppose that prior to round r + 1, our exploration process yielded that C(0,0)|r ≃ (G, o)|r. This
means that we have uncovered an embedding H of (G, o)|r in (Z2, (0, 0)). Let now eun(H,Z2 \ H) be
the number of unexplored edges with one endpoint in H and one in Z2 \H, and let m be the number
of edges between (G, o)|r and (G, o)|r+1. Note that while m = e ((G, o)|r, (G, o)|r+1) only depends on
the isomorphism class of (G, o) and was fixed from the get-go, eun(H,Z2 \H) is a random variable and
depends on the particular way (G, o)|r ended up being embedded in (Z2, (0, 0)).
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By employing the law of total probability and Stirling’s formula, we now obtain

P
(
C(0,0)|r+1 ≃ (G, o)|r+1

∣∣ C(0,0)|r ≃ (G, o)|r
)

≤ P
(
e
(
C(0,0)|r, C(0,0)|r+1

)
= e ((G, o)|r, (G, o)|r+1)

∣∣ C(0,0)|r ≃ (G, o)|r
)

=
∑
ℓ≥0

P
(
eun(H,Z2 \H) = ℓ

)
· P
(
exactly m edges between H and Z2 \H are open

∣∣ eun(H,Z2 \H) = ℓ
)

=
∑
ℓ≥m

P
(
eun(H,Z2 \H) = ℓ

)( ℓ

m

)
pm(1− p)ℓ−m

= P
(
eun(H,Z2 \H) = m

)
pm +

∑
ℓ≥m+1

P
(
eun(H,Z2 \H) = ℓ

)( ℓ

m

)
pm(1− p)ℓ−m

≤ P
(
eun(H,Z2 \H) = m

)
p+

∑
ℓ≥m+1

P
(
eun(H,Z2 \H) = ℓ

) ℓℓ

mm(ℓ−m)ℓ−m
· 1√

π

(
p

1− p

)m

(1− p)ℓ

Note that in the inequality above, we used the assumption that G is infinite, and hence m ≥ 1. Finally, by
differentiating the function

f(m) =
ℓℓ

mm(ℓ−m)ℓ−m
·
(

p

1− p

)m

with respect to m, we see that for m ∈ [1, ℓ), its maximum is attained when m = pℓ, and so we can
continue the chain of (in)equalities with

≤ P
(
eun(H,Z2 \H) = m

)
p+

∑
ℓ≥m+1

P
(
eun(H,Z2 \H) = ℓ

) ℓℓ

(pℓ)pℓ(ℓ− pℓ)ℓ−pℓ
· 1√

π

(
p

1− p

)pℓ

(1− p)ℓ

= P
(
eun(H,Z2 \H) = m

)
p+

∑
ℓ≥m+1

P
(
eun(H,Z2 \H) = ℓ

)
· 1√

π

≤ max

{
p,

1√
π

}
.

Remark 2. In the computation above which yielded

P
(
C(0,0)|r+1 ≃ (G, o)|r+1

∣∣ C(0,0)|r ≃ (G, o)|r
)

≤ P
(
e
(
C(0,0)|r, C(0,0)|r+1

)
= e ((G, o)|r, (G, o)|r+1)

∣∣ C(0,0)|r ≃ (G, o)|r
)
≤ max

{
p,

1√
π

}
,

we did not use the conditioning on the event C(0,0)|r ≃ (G, o)|r in any sense. It does have influence on the

individual probabilities P
(
eun(H,Z2 \H) = ℓ

)
, but we ended up only needing∑

ℓ≥m

P
(
eun(H,Z2 \H) = ℓ

)
≤ 1,

and so we could have derived

P
(
e
(
C(0,0)|r, C(0,0)|r+1

)
= e ((G, o)|r, (G, o)|r+1)

)
≤ max

{
p,

1√
π

}
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just as well. Nevertheless, the events e
(
C(0,0)|i, C(0,0)|i+1

)
= e ((G, o)|i, (G, o)|i+1) are not independent

for varying i, and so a priori we cannot bound

P
(
C(0,0)|r+1 ≃ (G, o)|r+1

)
≤ P

(
r⋂

i=0

e
(
C(0,0)|i, C(0,0)|i+1

)
= e ((G, o)|i, (G, o)|i+1)

)

by
r∏

i=0

P
(
e
(
C(0,0)|i, C(0,0)|i+1

)
= e ((G, o)|i, (G, o)|i+1)

)
≤
(
max

{
p,

1√
π

})r+1

.

Finally,

P
(
C(0,0)|r+1 ≃ (G, o)|r+1

)
≤ P

(
e
(
C(0,0)|r, C(0,0)|r+1

)
= e ((G, o)|r, (G, o)|r+1) ∩ C(0,0)|r ≃ (G, o)|r

)
= P

(
e
(
C(0,0)|r, C(0,0)|r+1

)
= e ((G, o)|r, (G, o)|r+1)

∣∣ C(0,0)|r ≃ (G, o)|r
)
P
(
C(0,0)|r ≃ (G, o)|r

)
≤ max

{
p,

1√
π

}
P
(
C(0,0)|r ≃ (G, o)|r

)
as was to be proven. By induction, it immediately follows that for any positive integer n,

P
(
C(0,0)|n ≃ (G, o)|n

)
≤
(
max

{
p,

1√
π

})n

.

Since both p and 1√
π
are strictly less than 1, we get that P

(
C(0,0)|n ≃ (G, o)|n

)
→ 0 as n → ∞. But

P
(
C(0,0) ≃ (G, o)

)
≤ P

(
C(0,0)|n ≃ (G, o)|n

)
for every n, and so necessarily

P
(
C(0,0) ≃ (G, o)

)
= 0.

Note that in the proof above, we only used the parameters e ((G, o)|i−1, (G, o)|i), and no other structural
properties of (G, o) were needed. This in particular gives the following stronger statement. Let

G• =
⋃

(m1,m2,... )∈NN

G(m1,m2,... )

be a partition of the set of connected rooted infinite graphs into the classes

G(m1,m2,... ) := {(G, o) : e ((G, o)|i−1, (G, o)|i) = mi} .

Then for every (m1,m2, . . . ) ∈ NN,

P
(
C(0,0) ∈ G(m1,m2,... )

)
= 0.

It is worth noting that for some sequences (m1,m2, . . . ) ∈ NN of edge counts, the intersection of G(m1,m2,... )

with subgraphs of Z2 rooted at the origin is uncountable. E.g., (2, 2, 2, . . . ) is one such example.
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