The local limit of proper supercritical percolation is uncountable as shown by $\mathbb{P}($ the cluster of the origin is $G)=0$ for any fixed infinite G and moreover \mathbb{P} (the cluster of the origin is in $\left.\mathcal{G}_{i}\right)=0$, where \mathcal{G}_{i} is a particular partition of connected subgraphs of the base lattice

Aranka

Berkeley, autumn 2022

Let us consider bond percolation on \mathbb{Z}^{2}, and let $C_{(0,0)}$ be the random variable representing the isomorphism class of the cluster of the origin. For any rooted graph (G, o) and non-negative integer r, let $\left.(G, o)\right|_{r}$ be the rooted graph which is the restriction of (G, o) to the vertices which are at distance at most r from the root.

Proposition 1. Let $C_{(0,0)}$ be the cluster of the origin in Bernoulli bond percolation with parameter $p \in[0,1)$. For any infinite rooted graph (G, o) and any non-negative integer r,

$$
\begin{equation*}
\mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{r+1} \simeq(G, o)\right|_{r+1}\right) \leq \max \left\{p, \frac{1}{\sqrt{\pi}}\right\} \mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right), \tag{1}
\end{equation*}
$$

implying

$$
\mathbb{P}\left(C_{(0,0)} \simeq(G, o)\right)=0 .
$$

Proof. Let an infinite rooted graph (G, o) and a non-negative integer r be fixed. The upper bound (1) for $\mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{r+1} \simeq(G, o)\right|_{r+1}\right)$ is based on a variant of breadth-first search. We will explore the cluster of the origin of a percolation sample as follows. Suppose that prior to round $s \in \mathbb{N}$, we determined the status of some edge set $E_{s-1} \subset E\left(\mathbb{Z}^{2}\right)$, meaning we know exactly which edges in E_{s-1} are open and which are closed, while we have no information about the edges in $E\left(\mathbb{Z}^{2}\right) \backslash E_{s-1}$. We also determined all the vertices $V_{s} \subset V\left(\mathbb{Z}^{2}\right)$ which are, in the graph distance of the percolated grid, at distance at most s from the origin. It is important to note that this is a different distance than the graph distance in the original grid.

To start with, $V_{0}=\{(0,0)\}$ and $E_{0}=\varnothing$. We will denote by $V_{=s}$ the subset of the vertices of V_{s} which are at distance exactly s from $(0,0)$ in the percolated grid. In round s, we uncover all the edges whose one endpoint is in $V_{=s}$ and the other in $V\left(\mathbb{Z}^{2}\right) \backslash V_{s}$. Then E_{s+1} is the set of all the edges incident to a vertex in V_{s} without those whose both endpoints are in $V_{=i}$ for some $i \in[s]$. In fact, since \mathbb{Z}^{2} contains no odd cycles, there can be no edges with both endpoints in $V_{=i}$ anyway, but we spell out the general approach because it can be applied to non-bipartite lattices just as successfully.

Let us suppose that prior to round $r+1$, our exploration process yielded that $\left.\left.C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}$. This means that we have uncovered an embedding H of $\left.(G, o)\right|_{r}$ in $\left(\mathbb{Z}^{2},(0,0)\right)$. Let now $e_{\mathrm{un}}\left(H, \mathbb{Z}^{2} \backslash H\right)$ be the number of unexplored edges with one endpoint in H and one in $\mathbb{Z}^{2} \backslash H$, and let m be the number of edges between $\left.(G, o)\right|_{r}$ and $\left.(G, o)\right|_{r+1}$. Note that while $m=e\left(\left.(G, o)\right|_{r},\left.(G, o)\right|_{r+1}\right)$ only depends on the isomorphism class of (G, o) and was fixed from the get-go, $e_{\mathrm{un}}\left(H, \mathbb{Z}^{2} \backslash H\right)$ is a random variable and depends on the particular way $\left.(G, o)\right|_{r}$ ended up being embedded in $\left(\mathbb{Z}^{2},(0,0)\right)$.

By employing the law of total probability and Stirling's formula, we now obtain

$$
\begin{aligned}
& \mathbb{P}\left(\left.\left.\left.C_{(0,0)}\right|_{r+1} \simeq(G, o)\right|_{r+1}\left|C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right) \\
& \leq \mathbb{P}\left(e\left(\left.C_{(0,0)}\right|_{r},\left.C_{(0,0)}\right|_{r+1}\right)=\left.e\left(\left.(G, o)\right|_{r},\left.(G, o)\right|_{r+1}\right)\left|C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right) \\
& =\sum_{\ell \geq 0} \mathbb{P}\left(e_{\text {un }}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right) \cdot \mathbb{P}\left(\text { exactly } m \text { edges between } H \text { and } \mathbb{Z}^{2} \backslash H \text { are open } \mid e_{\text {un }}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right) \\
& =\sum_{\ell \geq m} \mathbb{P}\left(e_{\text {un }}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right)\binom{\ell}{m} p^{m}(1-p)^{\ell-m} \\
& =\mathbb{P}\left(e_{\text {un }}\left(H, \mathbb{Z}^{2} \backslash H\right)=m\right) p^{m}+\sum_{\ell \geq m+1} \mathbb{P}\left(e_{\text {un }}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right)\binom{\ell}{m} p^{m}(1-p)^{\ell-m} \\
& \leq \mathbb{P}\left(e_{\text {un }}\left(H, \mathbb{Z}^{2} \backslash H\right)=m\right) p+\sum_{\ell \geq m+1} \mathbb{P}\left(e_{\text {un }}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right) \frac{\ell^{\ell}}{m^{m}(\ell-m)^{\ell-m}} \cdot \frac{1}{\sqrt{\pi}}\left(\frac{p}{1-p}\right)^{m}(1-p)^{\ell}
\end{aligned}
$$

Note that in the inequality above, we used the assumption that G is infinite, and hence $m \geq 1$. Finally, by differentiating the function

$$
f(m)=\frac{\ell^{\ell}}{m^{m}(\ell-m)^{\ell-m}} \cdot\left(\frac{p}{1-p}\right)^{m}
$$

with respect to m, we see that for $m \in[1, \ell)$, its maximum is attained when $m=p \ell$, and so we can continue the chain of (in)equalities with

$$
\begin{aligned}
& \leq \mathbb{P}\left(e_{\mathrm{un}}\left(H, \mathbb{Z}^{2} \backslash H\right)=m\right) p+\sum_{\ell \geq m+1} \mathbb{P}\left(e_{\mathrm{un}}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right) \frac{\ell^{\ell}}{(p \ell)^{p \ell}(\ell-p \ell)^{\ell-p \ell}} \cdot \frac{1}{\sqrt{\pi}}\left(\frac{p}{1-p}\right)^{p \ell}(1-p)^{\ell} \\
& =\mathbb{P}\left(e_{\mathrm{un}}\left(H, \mathbb{Z}^{2} \backslash H\right)=m\right) p+\sum_{\ell \geq m+1} \mathbb{P}\left(e_{\mathrm{un}}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right) \cdot \frac{1}{\sqrt{\pi}} \\
& \leq \max \left\{p, \frac{1}{\sqrt{\pi}}\right\} .
\end{aligned}
$$

Remark 2. In the computation above which yielded

$$
\begin{aligned}
& \mathbb{P}\left(\left.\left.\left.C_{(0,0)}\right|_{r+1} \simeq(G, o)\right|_{r+1}\left|C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right) \\
& \quad \leq \mathbb{P}\left(e\left(\left.C_{(0,0)}\right|_{r},\left.C_{(0,0)}\right|_{r+1}\right)=\left.e\left(\left.(G, o)\right|_{r},\left.(G, o)\right|_{r+1}\right)\left|C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right) \leq \max \left\{p, \frac{1}{\sqrt{\pi}}\right\}
\end{aligned}
$$

we did not use the conditioning on the event $\left.\left.C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}$ in any sense. It does have influence on the individual probabilities $\mathbb{P}\left(e_{\text {un }}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right)$, but we ended up only needing

$$
\sum_{\ell \geq m} \mathbb{P}\left(e_{u n}\left(H, \mathbb{Z}^{2} \backslash H\right)=\ell\right) \leq 1
$$

and so we could have derived

$$
\mathbb{P}\left(e\left(\left.C_{(0,0)}\right|_{r},\left.C_{(0,0)}\right|_{r+1}\right)=e\left(\left.(G, o)\right|_{r},\left.(G, o)\right|_{r+1}\right)\right) \leq \max \left\{p, \frac{1}{\sqrt{\pi}}\right\}
$$

just as well. Nevertheless, the events $e\left(\left.C_{(0,0)}\right|_{i},\left.C_{(0,0)}\right|_{i+1}\right)=e\left(\left.(G, o)\right|_{i},\left.(G, o)\right|_{i+1}\right)$ are not independent for varying i, and so a priori we cannot bound

$$
\mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{r+1} \simeq(G, o)\right|_{r+1}\right) \leq \mathbb{P}\left(\bigcap_{i=0}^{r} e\left(\left.C_{(0,0)}\right|_{i},\left.C_{(0,0)}\right|_{i+1}\right)=e\left(\left.(G, o)\right|_{i},\left.(G, o)\right|_{i+1}\right)\right)
$$

by

$$
\prod_{i=0}^{r} \mathbb{P}\left(e\left(\left.C_{(0,0)}\right|_{i},\left.C_{(0,0)}\right|_{i+1}\right)=e\left(\left.(G, o)\right|_{i},\left.(G, o)\right|_{i+1}\right)\right) \leq\left(\max \left\{p, \frac{1}{\sqrt{\pi}}\right\}\right)^{r+1}
$$

Finally,

$$
\begin{aligned}
& \mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{r+1} \simeq(G, o)\right|_{r+1}\right) \leq \mathbb{P}\left(e\left(\left.C_{(0,0)}\right|_{r},\left.C_{(0,0)}\right|_{r+1}\right)=\left.\left.e\left(\left.(G, o)\right|_{r},\left.(G, o)\right|_{r+1}\right) \cap C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right) \\
& \quad=\mathbb{P}\left(e\left(\left.C_{(0,0)}\right|_{r},\left.C_{(0,0)}\right|_{r+1}\right)=\left.e\left(\left.(G, o)\right|_{r},\left.(G, o)\right|_{r+1}\right)\left|C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right) \mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right) \\
& \quad \leq \max \left\{p, \frac{1}{\sqrt{\pi}}\right\} \mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{r} \simeq(G, o)\right|_{r}\right)
\end{aligned}
$$

as was to be proven. By induction, it immediately follows that for any positive integer n,

$$
\mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{n} \simeq(G, o)\right|_{n}\right) \leq\left(\max \left\{p, \frac{1}{\sqrt{\pi}}\right\}\right)^{n}
$$

Since both p and $\frac{1}{\sqrt{\pi}}$ are strictly less than 1 , we get that $\mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{n} \simeq(G, o)\right|_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. But

$$
\mathbb{P}\left(C_{(0,0)} \simeq(G, o)\right) \leq \mathbb{P}\left(\left.\left.C_{(0,0)}\right|_{n} \simeq(G, o)\right|_{n}\right)
$$

for every n, and so necessarily

$$
\mathbb{P}\left(C_{(0,0)} \simeq(G, o)\right)=0
$$

Note that in the proof above, we only used the parameters $e\left(\left.(G, o)\right|_{i-1},\left.(G, o)\right|_{i}\right)$, and no other structural properties of (G, o) were needed. This in particular gives the following stronger statement. Let

$$
\mathcal{G} \bullet=\bigcup_{\left(m_{1}, m_{2}, \ldots\right) \in \mathbb{N}^{\mathbb{N}}} \mathcal{G}_{\left(m_{1}, m_{2}, \ldots\right)}
$$

be a partition of the set of connected rooted infinite graphs into the classes

$$
\mathcal{G}_{\left(m_{1}, m_{2}, \ldots\right)}:=\left\{(G, o): e\left(\left.(G, o)\right|_{i-1},\left.(G, o)\right|_{i}\right)=m_{i}\right\}
$$

Then for every $\left(m_{1}, m_{2}, \ldots\right) \in \mathbb{N}^{\mathbb{N}}$,

$$
\mathbb{P}\left(C_{(0,0)} \in \mathcal{G}_{\left(m_{1}, m_{2}, \ldots\right)}\right)=0
$$

It is worth noting that for some sequences $\left(m_{1}, m_{2}, \ldots\right) \in \mathbb{N}^{\mathbb{N}}$ of edge counts, the intersection of $\mathcal{G}_{\left(m_{1}, m_{2}, \ldots\right)}$ with subgraphs of \mathbb{Z}^{2} rooted at the origin is uncountable. E.g., $(2,2,2, \ldots)$ is one such example.

